81国产精品久久久久久久久久,午夜一区二区三区视频,国产伦精品一区二区免费,一区二区三区网址,亚洲欧美日韩精品永久在线,中文字幕国产一区二区三区,精品国产高清一区二区三区

高一數學(xué)知識點(diǎn)總結

時(shí)間:2022-11-28 13:46:29 知識點(diǎn)總結 我要投稿

高一數學(xué)知識點(diǎn)總結(通用15篇)

  總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況加以總結和概括的書(shū)面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質(zhì)的理性認識上來(lái),因此,讓我們寫(xiě)一份總結吧。那么你知道總結如何寫(xiě)嗎?以下是小編為大家收集的高一數學(xué)知識點(diǎn)總結,歡迎大家借鑒與參考,希望對大家有所幫助。

高一數學(xué)知識點(diǎn)總結(通用15篇)

高一數學(xué)知識點(diǎn)總結1

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個(gè)參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線(xiàn)和圓的位置關(guān)系:

  1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。

 、佴>0,直線(xiàn)和圓相交、②Δ=0,直線(xiàn)和圓相切、③Δ<0,直線(xiàn)和圓相離。

  方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。

 、賒R,直線(xiàn)和圓相離、

  2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程、求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

  3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(cháng)以及弦的中點(diǎn)問(wèn)題。

  切線(xiàn)的性質(zhì)

 、艌A心到切線(xiàn)的距離等于圓的半徑;

 、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);

 、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);

 、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;

  當一條直線(xiàn)滿(mǎn)足

 。1)過(guò)圓心;

 。2)過(guò)切點(diǎn);

 。3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。

  切線(xiàn)的判定定理

  經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

  切線(xiàn)長(cháng)定理

  從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(cháng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

高一數學(xué)知識點(diǎn)總結2

  必修一

  一、集合

  一、集合有關(guān)概念1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3.集合的表示:{}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,

  北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N*或N+整數集Z有理數集Q實(shí)數集R1)列舉法:{a,b,c}

  2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的

  方法。{xR|x-3>2},{x|x-3>2}

  3)語(yǔ)言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類(lèi):

  (1)有限集含有有限個(gè)元素的集合(2)無(wú)限集含有無(wú)限個(gè)元素的集合2

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合間的基本關(guān)系1.“包含”關(guān)系子集

  注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)2

  實(shí)例:設A={x|x-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個(gè)集合是它本身的子集。AA

 、谡孀蛹:如果AB,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC④如果AB同時(shí)BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ規定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

  有n個(gè)元素的集合,含有2個(gè)子集,2個(gè)真子集

  二、函數

  1、函數定義域、值域求法綜合

  2.、函數奇偶性與單調性問(wèn)題的解題策略3、恒成立問(wèn)題的求解策略4、反函數的幾種題型及方法

  5、二次函數根的問(wèn)題一題多解&指數函數y=a^x

  a^a*a^b=a^a+b(a>0,a、b屬于Q)(a^a)^b=a^ab(a>0,a、b屬于Q)(ab)^a=a^a*b^a(a>0,a、b屬于Q)指數函數對稱(chēng)規律:

  1、函數y=a^x與y=a^-x關(guān)于y軸對稱(chēng)2、函數y=a^x與y=-a^x關(guān)于x軸對稱(chēng)

  3、函數y=a^x與y=-a^-x關(guān)于坐標原點(diǎn)對稱(chēng)&對數函數y=loga^x

  如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

  2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:換底公式logcblogab(a0,且a1;c0,且c1;b0).冪函數y=x^a(a屬于R)logca1、冪函數定義:一般地,形如yx(aR)的函數稱(chēng)為冪函數,其中為常數.

  2、冪函數性質(zhì)歸納.

 。1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);(2)0時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間[0,)上是增函數.特別地,當1時(shí),冪函數的圖象下凸;當01時(shí),冪函數的圖象上凸;(3)0時(shí),冪函數的圖象在區間(0,)上是減函數.在第一象限內,當x從右邊趨向原點(diǎn)時(shí),圖象在y軸右方無(wú)限地逼近y軸正半軸,當x趨于時(shí),圖象在x軸上方無(wú)限地逼近x軸正半軸.

  方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數yf(x)(xD),把使f(x)0成立的實(shí)數x叫做函數yf(x)(xD)的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數yf(x)的零點(diǎn)就是方程f(x)0實(shí)數根,亦即函數yf(x)的圖象與x軸交點(diǎn)的橫坐標。

  即:方程f(x)0有實(shí)數根函數yf(x)的圖象與x軸有交點(diǎn)函數yf(x)有零點(diǎn).3、函數零點(diǎn)的求法:

  1(代數法)求方程f(x)0的實(shí)數根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖○

  象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).4、二次函數的零點(diǎn):2bxc(a0).二次函數yax2(1)△>0,方程axbxc0有兩不等實(shí)根,二次函數的圖象與x軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).2(2)△=0,方程axbxc0有兩相等實(shí)根,二次函數的圖象與x軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).2(3)△<0,方程axbxc0無(wú)實(shí)根,二次函數的圖象與x軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

  高一數學(xué)知識總結數性質(zhì)三、平面向量

  向量:既有大小,又有方向的量.數量:只有大小,沒(méi)有方向的量.

  有向線(xiàn)段的三要素:起點(diǎn)、方向、長(cháng)度.零向量:長(cháng)度為0的向量.

  單位向量:長(cháng)度等于1個(gè)單位的向量.相等向量:長(cháng)度相等且方向相同的向量&向量的運算加法運算

  AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

  已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點(diǎn)的對角線(xiàn)OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

  向量的加法滿(mǎn)足所有的加法運算定律。

  減法運算

  與a長(cháng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  數乘運算

  實(shí)數λ與向量a的積是一個(gè)向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ>0時(shí),λa的方向和a的方向相同,當λ<0時(shí),λa的方向和a的方向相反,當λ=0時(shí),λa=0。設λ、μ是實(shí)數,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法運算、減法運算、數乘運算統稱(chēng)線(xiàn)性運算。

  向量的數量積

  已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。a?b的幾何意義:數量積a?b等于a的長(cháng)度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個(gè)向量的數量積等于它們對應坐標的乘積的和。四、三角函數

  1、善于用“1“巧解題

  2、三角問(wèn)題的非三角化解題策略3、三角函數有界性求最值解題方法4、三角函數向量綜合題例析5、三角函數中的數學(xué)思想方法

  15、正弦函數、余弦函數和正切函數的圖象與性質(zhì):ysinxytanxycosx函圖象

  定義域值域最值周期性奇偶性單調性

  RR

  1,1

  當x2kk當x2kk時(shí),

  ymax時(shí),21;當ymax1;當x2kx2kk時(shí),ymin1.ky1.2min時(shí),

  2

  1,1

  xxk,k

  2R

  既無(wú)最大值也無(wú)最小值

  2

  奇函數

  奇函數

  在

  偶函數

  對稱(chēng)性

  必修四

  角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負半軸重合,終邊落在第幾象限,則稱(chēng)為第幾象限角.k36090,k第一象限角的集合為k360,k第二象限角的集合為k36090k360180第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k終邊在y軸上的角的集合為k18090,k終邊在坐標軸上的角的集合為k90,k3、與角終邊相同的角的集合為*k360,k4、已知是第幾象限角,確定n所在象限的方法:先把各象限均分n等份,再從x軸的正半

  2k,2k在2k,2kk上232k上是增函數;在是增函數;在2k,2k2k,2kk上是減函數.22k上是減函數.對稱(chēng)中心k,0中心稱(chēng)k對對稱(chēng)軸xkkk,0k

  x2k對稱(chēng)軸2k

  ,k

  22k上是增函數.

  k,0k對稱(chēng)中心無(wú)對稱(chēng)軸2在kn軸的上方起,依次將各區域標上一、二、三、四,則原來(lái)是第幾象限對應的標號即為區域.

  5、長(cháng)度等于半徑長(cháng)的弧所對的圓心角叫做1弧度.口訣:奇變偶不變,符號看象限.

  公式一:

  設α為任意角,終邊相同的角的同一三角函數的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

  設α為任意角,πα的三角函數值與α的三角函數值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  公式三:

  任意角α與-α的三角函數值之間的關(guān)系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關(guān)系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數值之間的關(guān)系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

  sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

  sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

  (以上k∈Z)

  其他三角函數知識:同角三角函數基本關(guān)系

 、蓖侨呛瘮档幕娟P(guān)系式倒數關(guān)系:

  tanαcotα=1sinαcscα=1cosαsecα=1商的關(guān)系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關(guān)系:

  sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)兩角和差公式

 、矁山呛团c差的三角函數公式

  sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

  tanα+tanβtan(α+β)=1-tanαtanβ

  tanα-tanβtan(α-β)=1+tanαtanβ

  n終邊所落在的

  倍角公式

 、扯督堑恼、余弦和正切公式(升冪縮角公式)sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

 、窗虢堑恼、余弦和正切公式(降冪擴角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα萬(wàn)能公式⒌萬(wàn)能公式

  2tan(α/2)sinα=1+tan^2(α/2)

  1-tan^2(α/2)cosα=1+tan^2(α/2)

  2tan(α/2)tanα=1-tan^2(α/2)和差化積公式

 、啡呛瘮档暮筒罨e公式

  α+βα-βsinα+sinβ=2sin----cos---22

  α+βα-βsinα-sinβ=2cos----sin----22

  α+βα-βcosα+cosβ=2cos-----cos-----22

  α+βα-βcosα-cosβ=-2sin-----sin-----22積化和差公式

 、溉呛瘮档姆e化和差公式

  sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

高一數學(xué)知識點(diǎn)總結3

  集合與元素

  一個(gè)東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

  例如:你所在的班級是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對于這個(gè)班級集合來(lái)說(shuō),是它的一個(gè)元素;

  而整個(gè)學(xué)校又是由許許多多個(gè)班級組成的集合,你所在的班級只是其中的一分子,是一個(gè)元素。

  班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結論也不同,可見(jiàn),是集合還是元素,并不是絕對的。

  .解集合問(wèn)題的關(guān)鍵

  解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合;比如用數軸來(lái)表示集合,或是集合的元素為有序實(shí)數對時(shí),可用平面直角坐標系中的圖形表示相關(guān)的集合等。

高一數學(xué)知識點(diǎn)總結4

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同”

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

  A?① 任何一個(gè)集合是它本身的子集。A

  B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同時(shí) B?④ 如果A

  3. 不含任何元素的集合叫做空集,記為Φ

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補集

  (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  A}?S且 x? x?記作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數學(xué)知識點(diǎn)總結5

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集:N_或N+

  整數集:Z

  有理數集:Q

  實(shí)數集:R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合{xR|x-3>2},{x|x-3>2}

  3)語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類(lèi):

  (1)有限集含有有限個(gè)元素的集合

  (2)無(wú)限集含有無(wú)限個(gè)元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個(gè)集合是它本身的子集。AA

 、谡孀蛹:如果AB,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

 、苋绻鸄B同時(shí)BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個(gè)數:

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

  三、集合的運算

  運算類(lèi)型交集并集補集

  定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  記作,即

  CSA=

  AA=A

  AΦ=Φ

  AB=BA

  ABA

  ABB

  AA=A

  AΦ=A

  AB=BA

  ABA

  ABB

  (CuA)(CuB)

  =Cu(AB)

  (CuA)(CuB)

  =Cu(AB)

  A(CuA)=U

  A(CuA)=Φ.

  二、函數的有關(guān)概念

  1.函數的概念

  設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

  注意:

  1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。

  求函數的定義域時(shí)列不等式組的主要依據是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開(kāi)方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1.

  (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數為零底不可以等于零,

  (7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.

  相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));

 、诙x域一致(兩點(diǎn)必須同時(shí)具備)

  2.值域:先考慮其定義域

  (1)觀(guān)察法(2)配方法(3)代換法

  3.函數圖象知識歸納

  (1)定義:

  在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.

  (2)畫(huà)法

  1.描點(diǎn)法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱(chēng)變換

  4.區間的概念

  (1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間(2)無(wú)窮區間(3)區間的數軸表示.

  5.映射

  一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對應,那么就稱(chēng)對應f:AB為從集合A到集合B的一個(gè)映射。記作“f(對應關(guān)系):A(原象)B(象)”

  對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:

  (1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是的;

  (2)集合A中不同的元素,在集合B中對應的象可以是同一個(gè);

  (3)不要求集合B中的每一個(gè)元素在集合A中都有原象。

  6.分段函數

  (1)在定義域的不同部分上有不同的解析表達式的函數。

  (2)各部分的自變量的取值情況.

  (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復合函數。

  二.函數的性質(zhì)

  1.函數的單調性(局部性質(zhì))

  (1)增函數

  設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1

  如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1

  注意:函數的單調性是函數的局部性質(zhì);

  (2)圖象的特點(diǎn)

  如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的

  (3).函數單調區間與單調性的判定方法

  (A)定義法:

  (1)任取x1,x2∈D,且x1

  (2)作差f(x1)-f(x2);或者做商

  (3)變形(通常是因式分解和配方);

  (4)定號(即判斷差f(x1)-f(x2)的正負);

  (5)下結論(指出函數f(x)在給定的區間D上的單調性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數的單調性

  復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集.

  8.函數的奇偶性(整體性質(zhì))

  (1)偶函數:一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

  (2)奇函數:一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

  (3)具有奇偶性的函數的圖象的特征:偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).

  9.利用定義判斷函數奇偶性的步驟:

  ○1首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

  注意:函數定義域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件.首先看函數的定義域是否關(guān)于原點(diǎn)對稱(chēng),若不對稱(chēng)則函數是非奇非偶函數.若對稱(chēng),(1)再根據定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;(3)利用定理,或借助函數的圖象判定.

  10、函數的解析表達式

  (1)函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.

  (2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

  11.函數(小)值

  ○1利用二次函數的性質(zhì)(配方法)求函數的(小)值

  ○2利用圖象求函數的(小)值

  ○3利用函數單調性的判斷函數的(小)值:

  如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

  如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

  第三章基本初等函數

  一、指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.

  負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  當是奇數時(shí),,當是偶數時(shí),

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  ,

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  3.實(shí)數指數冪的運算性質(zhì)

  (1);

  (2);

  (3).

  (二)指數函數及其性質(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數,其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質(zhì)

  a>10

  定義域R定義域R

  值域y>0值域y>0

  在R上單調遞增在R上單調遞減

  非奇非偶函數非奇非偶函數

  函數圖象都過(guò)定點(diǎn)(0,1)函數圖象都過(guò)定點(diǎn)(0,1)

  注意:利用函數的單調性,結合圖象還可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數當且僅當;

  (3)對于指數函數,總有;

  二、對數函數

  (一)對數

  1.對數的概念:

  一般地,如果,那么數叫做以為底的對數,記作:(—底數,—真數,—對數式)

  說(shuō)明:○1注意底數的限制,且;

  ○2;

  ○3注意對數的書(shū)寫(xiě)格式.

  兩個(gè)重要對數:

  ○1常用對數:以10為底的對數;

  ○2自然對數:以無(wú)理數為底的對數的對數.

  指數式與對數式的互化

  冪值真數

  =N=b

  底數

  指數對數

  (二)對數的運算性質(zhì)

  如果,且,,,那么:

  ○1+;

  ○2-;

  ○3.

  注意:換底公式:(,且;,且;).

  利用換底公式推導下面的結論:(1);(2).

  (3)、重要的公式①、負數與零沒(méi)有對數;②、,③、對數恒等式

  (二)對數函數

  1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).

  注意:○1對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別。如:,都不是對數函數,而只能稱(chēng)其為對數型函數.

  ○2對數函數對底數的限制:,且.

  2、對數函數的性質(zhì):

  a>10

  定義域x>0定義域x>0

  值域為R值域為R

  在R上遞增在R上遞減

  函數圖象都過(guò)定點(diǎn)(1,0)函數圖象都過(guò)定點(diǎn)(1,0)

  (三)冪函數

  1、冪函數定義:一般地,形如的函數稱(chēng)為冪函數,其中為常數.

  2、冪函數性質(zhì)歸納.

  (1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);

  (2)時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間上是增函數.特別地,當時(shí),冪函數的圖象下凸;當時(shí),冪函數的圖象上凸;

  (3)時(shí),冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點(diǎn)時(shí),圖象在軸右方無(wú)限地逼近軸正半軸,當趨于時(shí),圖象在軸上方無(wú)限地逼近軸正半軸.

  第四章函數的應用

  一、方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。

  即:方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).

  3、函數零點(diǎn)的求法:

  ○1(代數法)求方程的實(shí)數根;

  ○2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  4、二次函數的零點(diǎn):

  二次函數.

  (1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).

  (2)△=0,方程有兩相等實(shí)根,二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  (3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

高一數學(xué)知識點(diǎn)總結6

  一:函數模型及其應用

  本節主要包括函數的模型、函數的應用等知識點(diǎn)。主要是理解函數解應用題的一般步驟靈活利用函數解答實(shí)際應用題。

  1、常見(jiàn)的函數模型有一次函數模型、二次函數模型、指數函數模型、對數函數模型、分段函數模型等。

  2、用函數解應用題的基本步驟是:

 。1)閱讀并且理解題意。(關(guān)鍵是數據、字母的實(shí)際意義);

 。2)設量建模;

 。3)求解函數模型;

 。4)簡(jiǎn)要回答實(shí)際問(wèn)題。

  常見(jiàn)考法:

  本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數和較復雜的函數的最值等問(wèn)題,屬于拔高題,難度較大。

  誤區提醒:

  1、求解應用性問(wèn)題時(shí),不僅要考慮函數本身的定義域,還要結合實(shí)際問(wèn)題理解自變量的取值范圍。

  2、求解應用性問(wèn)題時(shí),首先要弄清題意,分清條件和結論,抓住關(guān)鍵詞和量,理順數量關(guān)系,然后將文字語(yǔ)言轉化成數學(xué)語(yǔ)言,建立相應的數學(xué)模型。

  【典型例題】

  例1:

 。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函數關(guān)系式,并計算5個(gè)月后的本息和(不計復利)。

 。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

  例2:

  某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據市場(chǎng)調查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬(wàn)元)

 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數,并寫(xiě)出它們的函數關(guān)系式。

 。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬(wàn)元。(精確到1萬(wàn)元)。

高一數學(xué)知識點(diǎn)總結7

  冪函數的性質(zhì):

  對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;

  排除了為0這種可能,即對于x<0x="">0的所有實(shí)數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。

  總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;

  如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。

  在x大于0時(shí),函數的值域總是大于0的實(shí)數。

  在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。

  而只有a為正數,0才進(jìn)入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

 。2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。

 。3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。

 。4)當a小于0時(shí),a越小,圖形傾斜程度越大。

 。5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。

 。6)顯然冪函數。

  解題方法:換元法

  解數學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉化,關(guān)鍵是構造元和設元,理論依據是等量代換,目的.是變換研究對象,將問(wèn)題移至新對象的知識背景中去研究,從而使非標準型問(wèn)題標準化、復雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問(wèn)題中有廣泛的應用。

  練習題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

 。1)求f(log2x)的最小值及對應的x值;

 。2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]

  2、已知函數f(x)=3x+k(k為常數),A(—2k,2)是函數y=f—1(x)圖象上的點(diǎn)。

 。1)求實(shí)數k的值及函數f—1(x)的解析式;

 。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實(shí)數m的取值范圍。

高一數學(xué)知識點(diǎn)總結8

  (1)指數函數的定義域為所有實(shí)數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

  (2)指數函數的值域為大于0的實(shí)數集合。

  (3)函數圖形都是下凹的。

  (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個(gè)顯然的規律,就是當a從0趨向于無(wú)窮大的過(guò)程中(當然不能等于0),函數的曲線(xiàn)從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線(xiàn)y=1是從遞減到遞增的一個(gè)過(guò)渡位置。

  (6)函數總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。

  (7)函數總是通過(guò)(0,1)這點(diǎn)。

  (8)顯然指數函數無(wú)界。

  奇偶性

  定義

  一般地,對于函數f(x)

  (1)如果對于函數定義域內的任意一個(gè)x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

  (2)如果對于函數定義域內的任意一個(gè)x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

  (3)如果對于函數定義域內的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數f(x)既是奇函數又是偶函數,稱(chēng)為既奇又偶函數。

  (4)如果對于函數定義域內的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱(chēng)為非奇非偶函數。

  對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;

  排除了為0這種可能,即對于x<0和x>0的所有實(shí)數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。

  總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;

  如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。

  在x大于0時(shí),函數的值域總是大于0的實(shí)數。

  在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。

  而只有a為正數,0才進(jìn)入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

  可以看到:

  (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

  (2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。

  (3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。

  (4)當a小于0時(shí),a越小,圖形傾斜程度越大。

  (5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。

  (6)顯然冪函數無(wú)界。

  定義:

  x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α<180°。

  理解:

  (1)注意“兩個(gè)方向”:直線(xiàn)向上的方向、x軸的正方向;

  (2)規定當直線(xiàn)和x軸平行或重合時(shí),它的傾斜角為0度。

  意義:

 、僦本(xiàn)的傾斜角,體現了直線(xiàn)對x軸正向的傾斜程度;

 、谠谄矫嬷苯亲鴺讼抵,每一條直線(xiàn)都有一個(gè)確定的傾斜角;

 、蹆A斜角相同,未必表示同一條直線(xiàn)。

  公式:

  k=tanα

  k>0時(shí)α∈(0°,90°)

  k<0時(shí)α∈(90°,180°)

  k=0時(shí)α=0°

  當α=90°時(shí)k不存在

  ax+by+c=0(a≠0)傾斜角為A,

  則tanA=-a/b,

  A=arctan(-a/b)

  當a≠0時(shí),

  傾斜角為90度,即與X軸垂直

高一數學(xué)知識點(diǎn)總結9

  高一數學(xué)集合有關(guān)概念

  集合的含義

  集合的中元素的三個(gè)特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_N+整數集Z有理數集Q實(shí)數集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語(yǔ)言描述法:例:{不是直角三角形的三角形}

  Venn圖:

  4、集合的分類(lèi):

  有限集含有有限個(gè)元素的集合

  無(wú)限集含有無(wú)限個(gè)元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

高一數學(xué)知識點(diǎn)總結10

  數學(xué)是利用符號語(yǔ)言研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。小編準備了高一數學(xué)必修1期末考知識點(diǎn),希望你喜歡。

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

  說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭导捌溆浄ǎ

  非負整數集(即自然數集)記作:N

  正整數集 N*或N+ 整數集Z 有理數集Q 實(shí)數集R

  關(guān)于屬于的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上.

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀祵W(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分類(lèi):

  1.有限集 含有有限個(gè)元素的集合

  2.無(wú)限集 含有無(wú)限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} 元素相同

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、 任何一個(gè)集合是它本身的子集.AA

 、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA.

  4、全集與補集

  (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

高一數學(xué)知識點(diǎn)總結11

  集合間的基本關(guān)系

  1!鞍标P(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2!跋嗟取标P(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

  即:①任何一個(gè)集合是它本身的子集。AA

 、谡孀蛹喝绻鸄B,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

 、苋绻鸄B同時(shí)BA那么A=B

  3。不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集

  集合的運算

  運算類(lèi)型交集并集補集

  定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

高一數學(xué)知識點(diǎn)總結12

  函數的概念

  函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A---B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.

  (1)其中,x叫做自變量,x的取值范圍A叫做函數的定義域;

  (2)與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

  函數的三要素:定義域、值域、對應法則

  函數的表示方法:(1)解析法:明確函數的定義域

  (2)圖想像:確定函數圖像是否連線(xiàn),函數的圖像可以是連續的曲線(xiàn)、直線(xiàn)、折線(xiàn)、離散的點(diǎn)等等。

  (3)列表法:選取的自變量要有代表性,可以反應定義域的特征。

  4、函數圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.

  (2)畫(huà)法

  A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對稱(chēng)變換,即平移。

  (3)函數圖像平移變換的特點(diǎn):

  1)加左減右——————只對x

  2)上減下加——————只對y

  3)函數y=f(x)關(guān)于X軸對稱(chēng)得函數y=-f(x)

  4)函數y=f(x)關(guān)于Y軸對稱(chēng)得函數y=f(-x)

  5)函數y=f(x)關(guān)于原點(diǎn)對稱(chēng)得函數y=-f(-x)

  6)函數y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得

  函數y=|f(x)|

  7)函數y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱(chēng)的圖像得函數f(|x|)

高一數學(xué)知識點(diǎn)總結13

  歸納1

  1、“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2—1=0}B={—1,1}“元素相同”

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。AíA

 、谡孀蛹喝绻鸄íB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時(shí)BíA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  歸納2

  形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實(shí)數。

  反比例函數圖像性質(zhì):

  反比例函數的圖像為雙曲線(xiàn)。

  由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。

  當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數

  當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  知識點(diǎn):

  1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為|k|。

  2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(x±m)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)

  歸納3

  方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根,函數的圖象與坐標軸有交點(diǎn),函數有零點(diǎn)。

  3、函數零點(diǎn)的求法:

 。1)(代數法)求方程的實(shí)數根;

 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。

  4、二次函數的零點(diǎn):

 。1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。

 。2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

 。3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。

  歸納3

  形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實(shí)數。

  反比例函數圖像性質(zhì):

  反比例函數的圖像為雙曲線(xiàn)。

  由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。

  當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數

  當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  知識點(diǎn):

  1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為|k|。

  2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(x±m)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)

  歸納4

  冪函數的性質(zhì):

  對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;

  排除了為0這種可能,即對于x<0x="">0的所有實(shí)數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。

  總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;

  如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。

  在x大于0時(shí),函數的值域總是大于0的實(shí)數。

  在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。

  而只有a為正數,0才進(jìn)入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、

  可以看到:

 。1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

 。2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。

 。3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。

 。4)當a小于0時(shí),a越小,圖形傾斜程度越大。

 。5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。

 。6)顯然冪函數無(wú)界。

  解題方法:換元法

  解數學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法,換元的實(shí)質(zhì)是轉化,關(guān)鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問(wèn)題移至新對象的知識背景中去研究,從而使非標準型問(wèn)題標準化、復雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問(wèn)題中有廣泛的應用。

高一數學(xué)知識點(diǎn)總結14

  一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))

  1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。

  二、函數(30課時(shí),12個(gè))

  1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例。

  三、數列(12課時(shí),5個(gè))

  1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

  四、三角函數(46課時(shí),17個(gè))

  1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

  五、平面向量(12課時(shí),8個(gè))

  1.向量;2.向量的加法與減法;3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移。

  六、不等式(22課時(shí),5個(gè))

  1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

  七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))

  1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題;9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程。

  八、圓錐曲線(xiàn)(18課時(shí),7個(gè))

  1.橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。

  九、直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))

  1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5.直線(xiàn)和平面垂直的判定與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14.異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

  十、排列、組合、二項式定理(18課時(shí),8個(gè))

  1.分類(lèi)計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì)。

  十一、概率(12課時(shí),5個(gè))

  1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗。

  選修Ⅱ(24個(gè))

  十二、概率與統計(14課時(shí),6個(gè))

  1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸。

  十三、極限(12課時(shí),6個(gè))

  1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

  十四、導數(18課時(shí),8個(gè))

  1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。

  十五、復數(4課時(shí),4個(gè))

  1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二二項方程的解法。

高一數學(xué)知識點(diǎn)總結15

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無(wú)序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數集及其記法:

  非負整數集(即自然數集) 記作:N

  正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類(lèi):

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運算

  運算類(lèi)型 交 集 并 集 補 集

  定 義 由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  二、函數的有關(guān)概念

  1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

  注意:

  1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。

  求函數的定義域時(shí)列不等式組的主要依據是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開(kāi)方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1.

  (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數為零底不可以等于零,

  (7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.

  相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

  2.值域 : 先考慮其定義域

  (1)觀(guān)察法

  (2)配方法

  (3)代換法

  3. 函數圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上 .

  (2) 畫(huà)法

  A、 描點(diǎn)法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對稱(chēng)變換

  4.區間的概念

  (1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間

  (2)無(wú)窮區間

  (3)區間的數軸表示.

  5.映射

  一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數

  (1)在定義域的不同部分上有不同的解析表達式的函數。

  (2)各部分的自變量的取值情況.

  (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱(chēng)為f、g的復合函數。

  二.函數的性質(zhì)

  1.函數的單調性(局部性質(zhì))

  (1)增函數

  設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1

  如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1f(x2),那么就說(shuō)f(x)在這個(gè)區間上是減函數.區間D稱(chēng)為y=f(x)的單調減區間.

  注意:函數的單調性是函數的局部性質(zhì);

  (2) 圖象的特點(diǎn)

  如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

  (3).函數單調區間與單調性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(即判斷差f(x1)-f(x2)的正負);

  ○5 下結論(指出函數f(x)在給定的區間D上的單調性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數的單調性

  復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫(xiě)成其并集.

  8.函數的奇偶性(整體性質(zhì))

  (1)偶函數

  一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

  (2).奇函數

  一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

  (3)具有奇偶性的函數的圖象的特征

  偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).

  利用定義判斷函數奇偶性的步驟:

  ○1首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

  (3)利用定理,或借助函數的圖象判定 .

  9、函數的解析表達式

  (1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.

  (2)求函數的解析式的主要方法有:

  1) 湊配法

  2) 待定系數法

  3) 換元法

  4) 消參法

  10.函數最大(小)值(定義見(jiàn)課本p36頁(yè))

  ○1 利用二次函數的性質(zhì)(配方法)求函數的最大(小)值

  ○2 利用圖象求函數的最大(小)值

  ○3 利用函數單調性的判斷函數的最大(小)值:

  如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

  如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);