81国产精品久久久久久久久久,午夜一区二区三区视频,国产伦精品一区二区免费,一区二区三区网址,亚洲欧美日韩精品永久在线,中文字幕国产一区二区三区,精品国产高清一区二区三区

高二數學(xué)知識點(diǎn)

時(shí)間:2023-04-25 10:54:26 秀雯 總結 我要投稿

高二數學(xué)知識點(diǎn)大全

  在學(xué)習中,大家最不陌生的就是知識點(diǎn)吧!知識點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習我能掌握”的內容。還在為沒(méi)有系統的知識點(diǎn)而發(fā)愁嗎?下面是小編幫大家整理的高二數學(xué)知識點(diǎn),供大家參考借鑒,希望可以幫助到有需要的朋友。

高二數學(xué)知識點(diǎn)大全

  高二數學(xué)知識點(diǎn)

 。1)總體和樣本:

 、僭诮y計學(xué)中,把研究對象的全體叫做總體.

 、诎衙總(gè)研究對象叫做個(gè)體.

 、郯芽傮w中個(gè)體的總數叫做總體容量.

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數稱(chēng)為樣本容量.

 。2)簡(jiǎn)單隨機抽樣,也叫純隨機抽樣。

  就是從總體中不加任何分組、劃類(lèi)、排隊等,完全隨機地抽取調查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時(shí),才采用這種方法。

 。3)簡(jiǎn)單隨機抽樣常用的方法:

 、俪楹灧

 、陔S機數表法

 、塾嬎銠C模擬法

  在簡(jiǎn)單隨機抽樣的樣本容量設計中,主要考慮:

 、倏傮w變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

 。4)抽簽法:

 、俳o調查對象群體中的每一個(gè)對象編號;

 、跍蕚涑楹灥墓ぞ,實(shí)施抽簽;

 、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調查

  高二數學(xué)知識點(diǎn)

  一、不等式的性質(zhì)

  1.兩個(gè)實(shí)數a與b之間的大小關(guān)系

  2.不等式的性質(zhì)

  (4) (乘法單調性)

  3.絕對值不等式的性質(zhì)

  (2)如果a>0,那么

  (3)|ab|=|a||b|.

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的證明

  1.不等式證明的依據

  (2)不等式的性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

 、赼2+b2≥2ab(a、b∈R,當且僅當a=b時(shí)取“=”號)

  2.不等式的證明方法

  (1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.

  用比較法證明不等式的步驟是:作差——變形——判斷符號.

  (2)綜合法:從已知條件出發(fā),依據不等式的性質(zhì)和已證明過(guò)的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

  (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

  證明不等式除以上三種基本方法外,還有反證法、數學(xué)歸納法等.

  三、解不等式

  1.解不等式問(wèn)題的分類(lèi)

  (1)解一元一次不等式.

  (2)解一元二次不等式.

  (3)可以化為一元一次或一元二次不等式的不等式.

 、俳庖辉叽尾坏仁;

 、诮夥质讲坏仁;

 、劢鉄o(wú)理不等式;

 、芙庵笖挡坏仁;

 、萁鈱挡坏仁;

 、藿鈳Ы^對值的不等式;

 、呓獠坏仁浇M.

  2.解不等式時(shí)應特別注意下列幾點(diǎn):

  (1)正確應用不等式的基本性質(zhì).

  (2)正確應用冪函數、指數函數和對數函數的增、減性.

  (3)注意代數式中未知數的取值范圍.

  3.不等式的同解性

  (5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)

  (6)|f(x)|>g(x)

 、倥cf(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;

 、谂cg(x)<0同解.

  (9)當a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當0<a<1時(shí),af(x)>ag(x)與f(x)<g(x)同

  高二數學(xué)知識點(diǎn)

  ●不等式

  1、不等式你會(huì )解么?你會(huì )解么?如果是寫(xiě)解集不要忘記寫(xiě)成集合形式!

  2、的解集是(1,3),那么的解集是什么?

  3、兩類(lèi)恒成立問(wèn)題圖象法——恒成立,則=?

  ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

  4、線(xiàn)性規劃問(wèn)題

 。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

 。2)目標函數改寫(xiě):(注意分析截距與z的關(guān)系)

 。3)平行直線(xiàn)系去畫(huà)

  5、基本不等式的形式和變形形式

  如a,b為正數,a,b滿(mǎn)足,則ab的范圍是

  6、運用基本不等式求最值要注意:一正二定三相等!

  如的最小值是的最小值(不要忘記交代是什么時(shí)候取到=。。

  一個(gè)非常重要的函數——對勾函數的圖象是什么?

  運用對勾函數來(lái)處理下面問(wèn)題的最小值是

  7、★★兩種題型:

  和——倒數和(1的代換),如x,y為正數,且,求的最小值?

  和——積(直接用基本不等式),如x,y為正數,則的范圍是?

  不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數,則的范圍是?

  高二數學(xué)知識點(diǎn)

  平面向量

  戴氏航天學(xué)校老師總結加法與減法的代數運算:

  (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  戴氏航天學(xué)校老師總結向量加法有如下規律:+= +(交換律); +( +c)=( + )+c (結合律);

  兩個(gè)向量共線(xiàn)的充要條件:

  (1) 向量b與非零向量共線(xiàn)的充要條件是有且僅有一個(gè)實(shí)數,使得b=

  (2) 若=( ),b=( )則‖b .

  平面向量基本定理:

  若e1、e2是同一平面內的兩個(gè)不共線(xiàn)向量,那么對于這一平面內的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對實(shí)數,使得= e1+ e2

  高二數學(xué)知識點(diǎn)

  等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

  面積公式

  若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

  S=ab/2。

  且由等腰直角三角形性質(zhì)可知:底邊c上的高h=c/2,則三角面積可表示為:

  S=ch/2=c2/4。

  等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線(xiàn)角平分線(xiàn)垂線(xiàn)三線(xiàn)合一。

  反正弦函數的導數:正弦函數y=sinx在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。

  反函數求導方法

  若F(X),G(X)互為反函數,

  則:F(X)_(X)=1

  E.G.:y=arcsin_siny

  y_=1(arcsinx)_siny)=1

  y=1/(siny)=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

  其余依此類(lèi)推

  高二數學(xué)知識點(diǎn)

  一、導數的應用

  1、用導數研究函數的最值

  確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。

  學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。

  2、生活中常見(jiàn)的函數優(yōu)化問(wèn)題

  1)費用、成本最省問(wèn)題

  2)利潤、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1、歸納推理:歸納推理是高二數學(xué)的一個(gè)重點(diǎn)內容,其難點(diǎn)就是有部分結論得到一般結論,的方法是充分考慮部分結論提供的信息,從中發(fā)現一般規律;類(lèi)比推理的難點(diǎn)是發(fā)現兩類(lèi)對象的相似特征,由其中一類(lèi)對象的特征得出另一類(lèi)對象的特征,的方法是利用已經(jīng)掌握的數學(xué)知識,分析兩類(lèi)對象之間的關(guān)系,通過(guò)兩類(lèi)對象已知的相似特征得出所需要的相似特征。

  2、類(lèi)比推理:由兩類(lèi)對象具有某些類(lèi)似特征和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數的一元二次不等式解的討論

  1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進(jìn)行討論。

  2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標準,如果一元二次不等式對應的方程根不能通過(guò)因式分解的方法求出來(lái),則根據方程的判別式進(jìn)行分類(lèi)討論。

  通過(guò)不等式練習題能夠幫助你更加熟練的運用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結出來(lái)。

  四、坐標平面上的直線(xiàn)

  1、內容要目:直線(xiàn)的點(diǎn)方向式方程、直線(xiàn)的點(diǎn)法向式方程、點(diǎn)斜式方程、直線(xiàn)方程的一般式、直線(xiàn)的傾斜角和斜率等。點(diǎn)到直線(xiàn)的距離,兩直線(xiàn)的夾角以及兩平行線(xiàn)之間的距離。

  2、基本要求:掌握求直線(xiàn)的方法,熟練轉化確定直線(xiàn)方向的不同條件(例如:直線(xiàn)方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線(xiàn)、直線(xiàn)與直線(xiàn)的不同位置,能正確求點(diǎn)到直線(xiàn)的距離、兩直線(xiàn)的交點(diǎn)坐標及兩直線(xiàn)的夾角大小。

  3、重難點(diǎn):初步建立代數方法解決幾何問(wèn)題的觀(guān)念,正確將幾何條件與代數表示進(jìn)行轉化,定量地研究點(diǎn)與直線(xiàn)、直線(xiàn)與直線(xiàn)的位置關(guān)系。根據兩個(gè)獨立條件求出直線(xiàn)方程。熟練運用待定系數法。

  五、圓錐曲線(xiàn)

  1、內容要目:直角坐標系中,曲線(xiàn)C是方程F(x,y)=0的曲線(xiàn)及方程F(x,y)=0是曲線(xiàn)C的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線(xiàn)、拋物線(xiàn)的標準方程及它們的性質(zhì)。

  2、基本要求:理解曲線(xiàn)的方程與方程的曲線(xiàn)的意義,利用代數方法判斷定點(diǎn)是否在曲線(xiàn)

  上及求曲線(xiàn)的交點(diǎn)。掌握圓、橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義和求這些曲線(xiàn)方程的基本方法。求曲線(xiàn)的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標。利用直線(xiàn)和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應的幾何問(wèn)題。

  3、重難點(diǎn):建立數形結合的概念,理解曲線(xiàn)與方程的對應關(guān)系,掌握代數研究幾何的方法,掌握把已知條件轉化為等價(jià)的代數表示,通過(guò)代數方法解決幾何問(wèn)題。

  高二數學(xué)知識點(diǎn)

  (1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

  (5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。

  (6)頻率與概率的區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。

  高二數學(xué)知識點(diǎn)

  1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構成該事件區域的長(cháng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)幾何概型。

  2、幾何概型的概率公式:P(A)=構成事件A的區域長(cháng)度(面積或體積);

  試驗的全部結果所構成的區域長(cháng)度(面積或體積)

  3、幾何概型的特點(diǎn):

  1)試驗中所有可能出現的結果(基本事件)有無(wú)限多個(gè);

  2)每個(gè)基本事件出現的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無(wú)限多個(gè)結果,且與事件的區域長(cháng)度(或面積、體積等)有關(guān),即試驗結果具有無(wú)限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。

  通過(guò)以上對于幾何概型的基本知識點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性?xún)蓚(gè)特點(diǎn),無(wú)限性是指在一次試驗中,基本事件的個(gè)數可以是無(wú)限的,這是區分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長(cháng)度、面積(體積)和角度等”與“試驗的基本事件所占總長(cháng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類(lèi)型題作一歸納梳理。

  高二數學(xué)知識點(diǎn)

  1、向量的加法

  向量的加法滿(mǎn)足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運算律:

  交換律:a+b=b+a;

  結合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數乘向量

  實(shí)數λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當λ>0時(shí),λa與a同方向;

  當λ<0時(shí),λa與a反方向;

  當λ=0時(shí),λa=0,方向任意。

  當a=0時(shí),對于任意實(shí)數λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(cháng)或壓縮。

  當∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(cháng)為原來(lái)的∣λ∣倍;

  當∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

  數與向量的乘法滿(mǎn)足下面的運算律

  結合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.

  數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數乘向量的消去律:

 、 如果實(shí)數λ≠0且λa=λb,那么a=b。

 、 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的數量積

  定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個(gè)向量的數量積(內積、點(diǎn)積)是一個(gè)數量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。

  向量的數量積的坐標表示:a·b=x·x'+y·y'。

  向量的數量積的運算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

  高二數學(xué)知識點(diǎn)

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類(lèi):

 。1)共面:平行、相交

 。2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp?臻g向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp?臻g向量法

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

 。1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);

 。2)沒(méi)有公共點(diǎn)——平行或異面

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:

  a、直線(xiàn)與平面垂直時(shí),所成的角為直角

  b、直線(xiàn)與平面平行或在平面內,所成的角為0°角

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直。直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

 、壑本(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

【高二數學(xué)知識點(diǎn)】相關(guān)文章:

高二數學(xué)知識點(diǎn)07-15

高二的數學(xué)的知識點(diǎn)總結04-22

數學(xué)高二知識點(diǎn)總結03-07

高二數學(xué)的知識點(diǎn)總結03-08

高二數學(xué)的知識點(diǎn)整理02-24

高二數學(xué)知識點(diǎn)總結02-19

數學(xué)高二知識點(diǎn)總結歸納12-29

高二數學(xué)知識點(diǎn)總結12-18

高二數學(xué)知識點(diǎn)總結08-04

高二數學(xué)下冊知識點(diǎn)總結03-30