81国产精品久久久久久久久久,午夜一区二区三区视频,国产伦精品一区二区免费,一区二区三区网址,亚洲欧美日韩精品永久在线,中文字幕国产一区二区三区,精品国产高清一区二区三区

高中數學(xué)知識點(diǎn)總結

時(shí)間:2025-05-24 08:16:07 詩(shī)琳 知識點(diǎn)總結 我要投稿

(精華)高中數學(xué)知識點(diǎn)總結

  總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況進(jìn)行分析研究,做出帶有規律性結論的書(shū)面材料,它能夠給人努力工作的動(dòng)力,因此我們要做好歸納,寫(xiě)好總結。那么我們該怎么去寫(xiě)總結呢?下面是小編為大家整理的高中數學(xué)知識點(diǎn)總結 ,供大家參考借鑒,希望可以幫助到有需要的朋友。

(精華)高中數學(xué)知識點(diǎn)總結

  高中數學(xué)知識點(diǎn)總結 1

  數學(xué)選修2-2導數及其應用知識點(diǎn)必記

  1.函數的平均變化率是什么?答:平均變化率為

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負,可零。

  注2:函數的平均變化率可以看作是物體運動(dòng)的平均速度。

  2、導函數的概念是什么?

  答:函數yf(x)在xx0處的瞬時(shí)變化率是limf(x0x)f(x0)y,則稱(chēng)limx0xx0x函數yf(x)在點(diǎn)x0處可導,并把這個(gè)極限叫做yf(x)在x0處的導數,記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均變化率和導數的幾何意義是什么?

  答:函數的平均變化率的幾何意義是割線(xiàn)的斜率;函數的導數的幾何意義是切線(xiàn)的斜率。

  4導數的背景是什么?

  答:(1)切線(xiàn)的斜率;(2)瞬時(shí)速度;(3)邊際成本。

  5、常見(jiàn)的函數導數和積分公式有哪些?函數導函數不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常見(jiàn)的導數和定積分運算公式有哪些?答:若fx,gx均可導(可積),則有:和差的導數運算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導數運算特別地:Cfx"Cf"x商的導數運算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復合函數的導數yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區間可加性bakf(x)dxkf(x)dx(k為常數)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用導數求函數單調區間的步驟是什么?答:①求函數f(x)的導數f"(x)

 、诹頵"(x)>0,解不等式,得x的范圍就是遞增區間.③令f"(x)

  8.利用導數求函數的最值的步驟是什么?

  答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;

 、茖(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。

  注:實(shí)際問(wèn)題的開(kāi)區間唯一極值點(diǎn)就是所求的最值點(diǎn);

  9.求曲邊梯形的思想和步驟是什么?

  答:分割近似代替求和取極限(“以直代曲”的思想)

  10.定積分的`性質(zhì)有哪些?

  根據定積分的定義,不難得出定積分的如下性質(zhì):

  11.

  ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0

 、偻茝V:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定積分的取值情況有哪幾種?

  答:定積分的值可能取正值,也可能取負值,還可能是0.

  (l)當對應的曲邊梯形位于x軸上方時(shí),定積分的值取正值,且等于x軸上方的圖形面積;

 。2)當對應的曲邊梯形位于x軸下方時(shí),定積分的值取負值,且等于x軸上方圖形面積的相反數;

 。3)當位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時(shí),定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.

  12.物理中常用的微積分知識有哪些?答:(1)位移的導數為速度,速度的導數為加速度。(2)力的積分為功。

  數學(xué)選修2-2推理與證明知識點(diǎn)必記

  13.歸納推理的定義是什么?答:從個(gè)別事實(shí)中推演出一般性的結論,像這樣的推理通常稱(chēng)為歸納推理。歸納推理是由部分到整體,由個(gè)別到一般的推理。

  14.歸納推理的思維過(guò)程是什么?答:大致如圖:

  實(shí)驗、觀(guān)察概括、推廣猜測一般性結論

  15.歸納推理的特點(diǎn)有哪些?

  答:①歸納推理的前提是幾個(gè)已知的特殊現象,歸納所得的結論是尚屬未知的一般現象。

 、谟蓺w納推理得到的結論具有猜測的性質(zhì),結論是否真實(shí),還需經(jīng)過(guò)邏輯證明和實(shí)驗檢驗,因此,它不能作為數學(xué)證明的工具。③歸納推理是一種具有創(chuàng )造性的推理,通過(guò)歸納推理的猜想,可以作為進(jìn)一步研究的起點(diǎn),幫助人們發(fā)現問(wèn)題和提出問(wèn)題。

  16.類(lèi)比推理的定義是什么?

  答:根據兩個(gè)(或兩類(lèi))對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱(chēng)為類(lèi)比推理。類(lèi)比推理是由特殊到特殊的推理。

  17.類(lèi)比推理的思維過(guò)程是什么?答:

  觀(guān)察、比較聯(lián)想、類(lèi)推推測新的結論

  18.演繹推理的定義是什么?

  答:演繹推理是根據已有的事實(shí)和正確的結論(包括定義、公理、定理等)按照嚴格的邏輯法則得到新結論的推理過(guò)程。演繹推理是由一般到特殊的推理。

  19.演繹推理的主要形式是什么?答:三段論

  20.“三段論”可以表示為什么?

  答:①大前題:M是P②小前提:S是M③結論:S是P。

  其中①是大前提,它提供了一個(gè)一般性的原理;②是小前提,它指出了一個(gè)特殊對象;③是結論,它是根據一般性原理,對特殊情況做出的判斷。

  21.什么是直接證明?它包括哪幾種證明方法?

  答:直接證明是從命題的條件或結論出發(fā),根據已知的定義、公理、定理,直接推證結論的真實(shí)性。直接證明包括綜合法和分析法。

  22.什么是綜合法?

  答:綜合法就是“由因導果”,從已知條件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結論。

  23.什么是分析法?答:分析法就是從所要證明的結論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱(chēng)為“由果索因”。

  要注意敘述的形式:要證A,只要證B,B應是A成立的充分條件.分析法和綜合法常結合使用,不要將它們割裂開(kāi)。

  24什么是間接證明?

  答:即反證法:是指從否定的結論出發(fā),經(jīng)過(guò)邏輯推理,導出矛盾,證實(shí)結論的否定是錯誤的,從而肯定原結論是正確的證明方法。

  25.反證法的一般步驟是什么?

  答:(1)假設命題結論不成立,即假設結論的反面成立;

 。2)從假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 。3)從矛盾判定假設不正確,即所求證命題正確。

  26常見(jiàn)的“結論詞”與“反義詞”有哪些?原結論詞反義詞原結論詞至少有一個(gè)至多有一個(gè)至少有n個(gè)至多有n個(gè)一個(gè)也沒(méi)有至少有兩個(gè)至多有n-1個(gè)至少有n+1個(gè)對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立

  27.反證法的思維方法是什么?答:正難則反....

  28.如何歸繆矛盾?

  答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;

 。3)自相矛盾.

  29.數學(xué)歸納法(只能證明與正整數有關(guān)的數學(xué)命題)的步驟是什么?nnN答:(1)證明:當n取第一個(gè)值時(shí)命題成立;00

  (2)假設當n=k(k∈N*,且k≥n0)時(shí)命題成立,證明當n=k+1時(shí)命題也成立由(1),(2)可知,命題對于從n0開(kāi)始的所有正整數n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。

  數學(xué)選修2-2數系的擴充和復數的概念知識點(diǎn)必記

  30.復數的概念是什么?答:形如a+bi的數叫做復數,其中i叫虛數單位,a叫實(shí)部,b叫虛部,數集

  Cabi|a,bR叫做復數集。

  規定:abicdia=c且,強調:兩復數不能比較大小,只有相等或不相b=d等。實(shí)數(b0)

  31.數集的關(guān)系有哪些?答:復數Z一般虛數(a0)

  虛數(b0)純虛數(a0)

  32.復數的幾何意義是什么?答:復數與平面內的點(diǎn)或有序實(shí)數對一一對應。

  33.什么是復平面?

  答:根據復數相等的定義,任何一個(gè)復數zabi,都可以由一個(gè)有序實(shí)數對

  (a,b)唯一確定。由于有序實(shí)數對(a,b)與平面直角坐標系中的點(diǎn)一一對應,因此

  復數集與平面直角坐標系中的點(diǎn)集之間可以建立一一對應。這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。實(shí)軸上的點(diǎn)都表示實(shí)數,除了原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數。

  34.如何求復數的模(絕對值)?答:與復數z對應的向量OZ的模r叫做復數zabi的模(也叫絕對值)記作z或abi。由模的定義可知:zabia2b2

  35.復數的加、減法運算及幾何意義是什么?

  答:①復數的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。

  注:復數的加、減法運算也可以按向量的加、減法來(lái)進(jìn)行。

 、趶蛿档某朔ǚ▌t:(abi)(cdi)acbdadbci。

 、蹚蛿档某ǚ▌t:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實(shí)數化因子

  36.什么是共軛復數?

  答:兩復數abi與abi互為共軛復數,當b0時(shí),它們叫做共軛虛數。

  高中數學(xué)知識點(diǎn)總結 2

  1、等比中項

  如果在a與b中間插入一個(gè)數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。

  有關(guān)系:

  注:兩個(gè)非零同號的實(shí)數的等比中項有兩個(gè),它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

  2、等比數列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時(shí),等比數列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時(shí),等比數列的前n項和的公式為

  Sn=na1

  3、等比數列前n項和與通項的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4、等比數列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數列中,依次每k項之和仍成等比數列。

  (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項均為正數的等比數列各項取同底指數冪后構成一個(gè)等差數列;反之,以任一個(gè)正數C為底,用一個(gè)等差數列的各項做指數構造冪Can,則是等比數列。在這個(gè)意義下,我們說(shuō):一個(gè)正項等比數列與等差數列是“同構”的。

  (5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的.n次方。

  等比數列求和公式

  q≠1時(shí),Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

  q=1時(shí),Sn=na1

  (a1為首項,an為第n項,d為公差,q為等比)

  這個(gè)常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。注:q=1時(shí),{an}為常數列。利用等比數列求和公式可以快速的計算出該數列的和。

  等比數列求和公式推導

  Sn=a1+a2+a3+、、、+an(公比為q)

  qSn=a1q + a2q + a3q +、、、+ anq = a2+ a3+ a4+、、、+ an+ a(n+1)

  Sn-qSn=(1-q)Sn=a1-a(n+1)

  a(n+1)=a1qn

  Sn=a1(1-qn)/(1-q)(q≠1)

  高中數學(xué)知識點(diǎn)總結 3

  導數及其應用

  一.導數概念的引入

  數學(xué)選修2-2知識點(diǎn)總結

  1.導數的物理意義:瞬時(shí)速率。一般的,函數yf(x)在xx0處的瞬時(shí)變化率是

  limf(x0x)f(x0)x,

  x0我們稱(chēng)它為函數yf(x)在xx0處的導數,記作f(x0)或y|xx,即

  0f(x0)=limf(x0x)f(x0)xx0

  例1.在高臺跳水運動(dòng)中,運動(dòng)員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:

  s)存在函數關(guān)系

  h(t)4.9t6.5t10

  2運動(dòng)員在t=2s時(shí)的瞬時(shí)速度是多少?解:根據定義

  vh(2)limh(2x)h(2)xx013.1

  即該運動(dòng)員在t=2s是13.1m/s,符號說(shuō)明方向向下

  2.導數的幾何意義:曲線(xiàn)的切線(xiàn).通過(guò)圖像,我們可以看出當點(diǎn)Pn趨近于P時(shí),直線(xiàn)PT與

  曲線(xiàn)相切。容易知道,割線(xiàn)PPn的斜率是knf(xn)f(x0)xnx0,當點(diǎn)Pn趨近于P時(shí),函

  數yf(x)在xx0處的導數就是切線(xiàn)PT的斜率k,即

  klimf(xn)f(x0)xnx0f(x0)

  x03.導函數:當x變化時(shí),f(x)便是x的一個(gè)函數,我們稱(chēng)它為f(x)的導函數.yf(x)的導函數有時(shí)也記作y,即

  f(x)limf(xx)f(x)xx0

  二.導數的計算

  1.函數yf(x)c的導數2.函數yf(x)x的導數3.函數yf(x)x的導數

  4.函數yf(x)1x的導數

  基本初等函數的導數公式:

  1若f(x)c(c為常數),則f(x)0;2若f(x)x,則f(x)x1;3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex

  x7若f(x)loga,則f(x)1xlna1x

  8若f(x)lnx,則f(x)導數的運算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

  復合函數求導

  yf(u)和ug(x),稱(chēng)則y可以表示成為x的函數,即yf(g(x))為一個(gè)復合函數yf(g(x))g(x)

  三.導數在研究函數中的應用1.函數的單調性與導數:

  一般的,函數的單調性與其導數的正負有如下關(guān)系:

  在某個(gè)區間(a,b)內,如果f(x)0,那么函數yf(x)在這個(gè)區間單調遞增;如果f(x)0,那么函數yf(x)在這個(gè)區間單調遞減.2.函數的極值與導數

  極值反映的是函數在某一點(diǎn)附近的大小情況.求函數yf(x)的極值的方法是:

  (1)如果在x0附近的左側f(wàn)(x)0,右側f(wàn)(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側f(wàn)(x)0,右側f(wàn)(x)0,那么f(x0)是極小值;4.函數的最大(小)值與導數

  函數極大值與最大值之間的關(guān)系.

  求函數yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數yf(x)在(a,b)內的極值;

 。2)將函數yf(x)的各極值與端點(diǎn)處的函數值f(a),f(b)比較,其中最大的是一個(gè)

  最大值,最小的是最小值.

  四.生活中的優(yōu)化問(wèn)題

  利用導數的知識,,求函數的最大(小)值,從而解決實(shí)際問(wèn)題

  第二章推理與證明

  考點(diǎn)一合情推理與類(lèi)比推理

  根據一類(lèi)事物的部分對象具有某種性質(zhì),退出這類(lèi)事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過(guò)程,它屬于合情推理

  根據兩類(lèi)不同事物之間具有某些類(lèi)似(或一致)性,推測其中一類(lèi)事物具有與另外一類(lèi)事物類(lèi)似的性質(zhì)的推理,叫做類(lèi)比推理.

  類(lèi)比推理的一般步驟:

  (1)找出兩類(lèi)事物的相似性或一致性;

  (2)用一類(lèi)事物的性質(zhì)去推測另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想);

  (3)一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的如果兩個(gè)事物在某

  些性質(zhì)上相同或相似,那么他們在另一寫(xiě)性質(zhì)上也可能相同或類(lèi)似,類(lèi)比的結論可能是真的

  (4)一般情況下,如果類(lèi)比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類(lèi)比

  得出的命題越可靠.

  考點(diǎn)二演繹推理(俗稱(chēng)三段論)

  由一般性的命題推出特殊命題的過(guò)程,這種推理稱(chēng)為演繹推理.

  考點(diǎn)三數學(xué)歸納法

  1.它是一個(gè)遞推的數學(xué)論證方法.

  2.步驟:A.命題在n=1(或n0)時(shí)成立,這是遞推的基礎;B.假設在n=k時(shí)命題成立C.證明n=k+1時(shí)命題也成立,

  完成這兩步,就可以斷定對任何自然數(或n>=n0,且nN)結論都成立?键c(diǎn)三證明1.反證法:2.分析法:3.綜合法:

  第一章數系的擴充和復數的.概念考點(diǎn)一:復數的概念

  (1)復數:形如abi(aR,bR)的數叫做復數,a和b分別叫它的實(shí)部和虛部.

  (2)分類(lèi):復數abi(aR,bR)中,當b0,就是實(shí)數;b0,叫做虛數;當a0,b0時(shí),

  叫做純虛數.

  (3)復數相等:如果兩個(gè)復數實(shí)部相等且虛部相等就說(shuō)這兩個(gè)復數相等.

  (4)共軛復數:當兩個(gè)復數實(shí)部相等,虛部互為相反數時(shí),這兩個(gè)復數互為共軛復數.(5)復平面:建立直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部

  分叫做虛軸。

  (6)兩個(gè)實(shí)數可以比較大小,但兩個(gè)復數如果不全是實(shí)數就不能比較大小。

  考點(diǎn)二:復數的運算

  1.復數的加,減,乘,除按以下法則進(jìn)行設z1abi,z2cdi(a,b,c,dR)則

  z1z2(ac)(bd)iz1z2(acbd)(adbc)i

  z1z2(acbd)(adbc)icd22(z20)

  2,幾個(gè)重要的結論

  2222(1)|z1z2||z1z2|2(|z1||z2|)

  (2)zz|z|2|z|2(3)若z為虛數,則|z|z3.運算律

  (1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)

  224.關(guān)于虛數單位i的一些固定結論:

 。1)i1(2)ii(3)i1(2)ii234nn2in3in

  擴展閱讀:高中數學(xué)文科選修1-2知識點(diǎn)總結

  高中數學(xué)選修1-2知識點(diǎn)總結

  第一章統計案例

  1.線(xiàn)性回歸方程①變量之間的兩類(lèi)關(guān)系:函數關(guān)系與相關(guān)關(guān)系;②制作散點(diǎn)圖,判斷線(xiàn)性相關(guān)關(guān)系

 、劬(xiàn)性回歸方程:ybxa(最小二乘法)

  nxiyinxyi1bn2其中,2xinxi1aybx注意:線(xiàn)性回歸直線(xiàn)經(jīng)過(guò)定點(diǎn)(x,y).

  2.相關(guān)系數(判定兩個(gè)變量線(xiàn)性相關(guān)性):r(xi1nix)(yiy)2

  (xi1nix)(yi1niy)2注:⑴r>0時(shí),變量x,y正相關(guān);r第二章框圖

  1.流程圖

  流程圖是由一些圖形符號和文字說(shuō)明構成的圖示.流程圖是表述工作方式、工藝流程的一種常用手段,它的特點(diǎn)是直觀(guān)、清晰.3.結構圖

  一些事物之間不是先后順序關(guān)系,而是存在某種邏輯關(guān)系,像這樣的關(guān)系可以用結構圖來(lái)描述.常用的結構圖一般包括層次結構圖,分類(lèi)結構圖及知識結構圖等.

  第三章推理與證明

  1.推理⑴合情推理:

  歸納推理和類(lèi)比推理都是根據已有事實(shí),經(jīng)過(guò)觀(guān)察、分析、比較、聯(lián)想,在進(jìn)行歸納、類(lèi)比,然后提出猜想的推理,我們把它們稱(chēng)為合情推理。①歸納推理

  由某類(lèi)食物的部分對象具有某些特征,推出該類(lèi)事物的全部對象都具有這些特征的推理,或者有個(gè)別事實(shí)概括出一般結論的推理,稱(chēng)為歸納推理,簡(jiǎn)稱(chēng)歸納。歸納推理是由部分到整體,由個(gè)別到一般的推理。②類(lèi)比推理

  由兩類(lèi)對象具有類(lèi)似和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理,稱(chēng)為類(lèi)比推理,簡(jiǎn)稱(chēng)類(lèi)比。類(lèi)比推理是特殊到特殊的推理。⑵演繹推理

  從一般的原理出發(fā),推出某個(gè)特殊情況下的結論,這種推理叫演繹推理。演繹推理是由一般到特殊的推理。

  “三段論”是演繹推理的一般模式,包括:⑴大前提---------已知的一般結論;⑵小前提---------所研究的特殊情況;⑶結論---------根據一般原理,對特殊情況得出的判斷。

  2

  2.證明

  (1)直接證明①綜合法

  一般地,利用已知條件和某些數學(xué)定義、定理、公理等,經(jīng)過(guò)一系列的推理論證,最后推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。②分析法

  一般地,從要證明的結論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結論歸結為判定一個(gè)明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。(2)間接證明……反證法

  一般地,假設原命題不成立,經(jīng)過(guò)正確的推理,最后得出矛盾,因此說(shuō)明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。

  第四章復數

  1.復數的有關(guān)概念

  (1)把平方等于-1的數用符號i表示,規定i2=-1,把i叫作虛數單位.

  (2)形如a+bi的數叫作復數(a,b是實(shí)數,i是虛數單位).通常表示為z=a+bi(a,b∈R).(3)對于復數z=a+bi,a與b分別叫作復數z的______與______,并且分別用Rez與Imz表示.2.數集之間的關(guān)系

  復數的全體組成的集合叫作_____________,記作C.3.復數的分類(lèi)

  實(shí)數(b=0)

  復數a+bi

  純虛數(a=0)(a,b∈R)虛數(b≠0)

  非純虛數(a≠0)

  4.兩個(gè)復數相等的充要條件

  設a,b,c,d都是實(shí)數,則a+bi=c+di,當且僅當_________

  3

  5.復平面

  (1)定義:當用__________________的點(diǎn)來(lái)表示復數時(shí),我們稱(chēng)這個(gè)直角坐標平面為復平面.(2)實(shí)軸:_______稱(chēng)為實(shí)軸.虛軸:_________稱(chēng)為虛軸.6.復數的模

  若z=a+bi(a,b∈R),則_______________.7.共軛復數

  (1)定義:當兩個(gè)復數的實(shí)部________,虛部互為_(kāi)__________時(shí),這樣的兩個(gè)復數叫作互為共軛復數.復數z的共軛復數用______表示,即若z=a+bi,則z-=__________.2)性質(zhì):==___________.

  必背結論

  1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虛數b≠0(a,b∈R);

  (3)z=a+bi是純虛數a=0且b≠0(a,b∈R)z+z=0(z≠0)z2

  高中數學(xué)知識點(diǎn)總結 4

  一次函數

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx (k為常數,k0)

  二、一次函數的性質(zhì):

  1、y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實(shí)數b取任何實(shí)數)

  2、當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  1、作法與圖形:通過(guò)如下3個(gè)步驟

 。1)列表;

 。2)描點(diǎn);

 。3)連線(xiàn),可以作出一次函數的圖像一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  2、性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  3、k,b與函數圖像所在象限:

  當k0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當b0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k0時(shí),直線(xiàn)只通過(guò)一、三象限;當k0時(shí),直線(xiàn)只通過(guò)二、四象限。

  四、確定一次函數的表達式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。

 。1)設一次函數的表達式(也叫解析式)為y=kx+b。

 。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②

 。3)解這個(gè)二元一次方程,得到k,b的值。

 。4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1、當時(shí)間t一定,距離s是速度v的一次函數。s=vt。

  2、當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人補充)

  1、求函數圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線(xiàn)段的中點(diǎn):|x1—x2|/2

  3、求與y軸平行線(xiàn)段的中點(diǎn):|y1—y2|/2

  4、求任意線(xiàn)段的長(cháng):(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

  二次函數

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

 。╝,b,c為常數,a0,且a決定函數的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II、二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a0)

  頂點(diǎn)式:y=a(x—h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]

  注:在3種形式的.互相轉化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,

  可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV、拋物線(xiàn)的性質(zhì)

  1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)

  x= —b/2a。

  對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P( —b/2a,(4ac—b^2)/4a )

  當—b/2a=0時(shí),P在y軸上;當= b^2—4ac=0時(shí),P在x軸上。

  3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a0時(shí),拋物線(xiàn)向上開(kāi)口;當a0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。

  當a與b同號時(shí)(即ab0),對稱(chēng)軸在y軸左;

  當a與b異號時(shí)(即ab0),對稱(chēng)軸在y軸右。

  5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數

  = b^2—4ac0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  = b^2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  = b^2—4ac0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)

  V、二次函數與一元二次方程

  特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,

  當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),

  即ax^2+bx+c=0

  此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。

  函數與x軸交點(diǎn)的橫坐標即為方程的根。

  1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:

  解析式頂點(diǎn)坐標對稱(chēng)軸

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  當h0時(shí),y=a(x—h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、

  當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x—h)^2+k的圖象;

  當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;

  當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x—h)^2+k的圖象;

  當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;

  因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了、這給畫(huà)圖象提供了方便、

  2、拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當a0時(shí),開(kāi)口向上,當a0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=—b/2a,頂點(diǎn)坐標是(—b/2a,[4ac—b^2]/4a)、

  3、拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當x —b/2a時(shí),y隨x的增大而減;當x —b/2a時(shí),y隨x的增大而增大、若a0,當x —b/2a時(shí),y隨x的增大而增大;當x —b/2a時(shí),y隨x的增大而減小、

  4、拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):

 。1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);

 。2)當△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

 。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|

  當△=0、圖象與x軸只有一個(gè)交點(diǎn);

  當△0、圖象與x軸沒(méi)有交點(diǎn)、當a0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y0;當a0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y0、

  5、拋物線(xiàn)y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、

  頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值、

  6、用待定系數法求二次函數的解析式

 。1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:

  y=ax^2+bx+c(a0)、

 。2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、

 。3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x—x)(x—x)(a0)、

  7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現、

  反比例函數

  形如y=k/x(k為常數且k0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實(shí)數。

  反比例函數圖像性質(zhì):

  反比例函數的圖像為雙曲線(xiàn)。

  由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。

  當K0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數

  當K0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  知識點(diǎn):

  1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為| k |。

  2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(xm)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)

  高中數學(xué)知識點(diǎn)總結 5

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面。

  按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp?臻g向量法。

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp?臻g向量法。

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);(2)沒(méi)有公共點(diǎn)——平行或異面。

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行。

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角;b、直線(xiàn)與平面平行或在平面內,所成的角為0°角。

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角。

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直。

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直。直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  數學(xué)常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來(lái)高考數學(xué)試題的設置是8道選擇題、6道填空題、6到大題,通常稱(chēng)為866結構。在實(shí)體設置的結構中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱(chēng)為是755結構;A差的就是644,先把自己能做的、會(huì )做的拿到手。這是第一點(diǎn)。

  第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì )做怎么辦?應先跳過(guò)去,不是這道題不會(huì )做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩定下來(lái)以后再回過(guò)頭來(lái)看會(huì )頓悟,豁然開(kāi)朗。

  第四,做選擇題的時(shí)候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過(guò)程,因此在這個(gè)過(guò)程中都應不擇手段,只要是能把正確的結論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開(kāi)始也不看它的四個(gè)選項,從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì )比較快,正確地找出結果來(lái)。再就是數形結合法。最后實(shí)在不行了,就將四個(gè)選項代入驗證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數形結合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規范答題可以減少失分。簡(jiǎn)單地說(shuō),規范答題就是從上一步的原因到下一步的結論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因為什么所以什么是一個(gè)必然的過(guò)程,這是規范答題。

  學(xué)霸分享的數學(xué)復習技巧

  1、把答案蓋住看例題

  例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

  經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì )更大。

  2、研究每題都考什么

  數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。

  學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.

  4、分析試卷總結經(jīng)驗

  每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。

  數學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的.應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。

  6、構造法

  在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。

  數學(xué)經(jīng)常遇到的問(wèn)題解答

  1、要提高數學(xué)成績(jì)首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數學(xué)成績(jì),首先就應該從基礎知識學(xué)起。不少同學(xué)覺(jué)得基礎知識過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì )了。這種“自我感覺(jué)良好”其實(shí)是一種錯覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎不牢的表現,因此要提高數學(xué)成績(jì)先要把基礎夯實(shí)。

  2、基礎不好怎么學(xué)好數學(xué)?

  對于基礎差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個(gè)好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術(shù)?

  方法君曾不止一次提到了“題海戰術(shù)”,題海戰術(shù)究竟可不可取呢?“題海戰術(shù)”其實(shí)也是一種學(xué)習方法,但很多學(xué)生只知道做題,不懂得總結,體現不出任何的學(xué)習效果。因此在做題后要總結至關(guān)重要,只有認真總結才能不斷積累做題經(jīng)驗,這樣才能取得理想成績(jì)。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績(jì)不好,會(huì )說(shuō)自己是因為粗心導致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒(méi)有清晰的解題思路、計算能力不強。因此在平時(shí)的學(xué)習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習弱點(diǎn),所以,要告訴自己,高中數學(xué)沒(méi)有“粗心”只有“不用心”。

  高中數學(xué)知識點(diǎn)總結 6

  選修4-4數學(xué)知識點(diǎn)

  一、選考內容《坐標系與參數方程》高考考試大綱要求:

  1.坐標系:

 、倮斫庾鴺讼档淖饔.

 、诹私庠谄矫嬷苯亲鴺讼瞪炜s變換作用下平面圖形的變化情況.

 、勰茉跇O坐標系中用極坐標表示點(diǎn)的位置,理解在極坐標系和平面直角坐標系中表示點(diǎn)的位置的區別,能進(jìn)行極坐標和直角坐標的互化.

 、苣茉跇O坐標系中給出簡(jiǎn)單圖形(如過(guò)極點(diǎn)的直線(xiàn)、過(guò)極點(diǎn)或圓心在極點(diǎn)的圓)的方程.通過(guò)比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時(shí)選擇適當坐標系的意義.

  2.參數方程:①了解參數方程,了解參數的意義.

 、谀苓x擇適當的參數寫(xiě)出直線(xiàn)、圓和圓錐曲線(xiàn)的參數方程.

  二、知識歸納總結:

  1.伸縮變換:設點(diǎn)P(x,y)是平面直角坐標系中的任意一點(diǎn),在變換:yy,(0).的作用下,點(diǎn)P(x,y)對應到點(diǎn)P(x,y),稱(chēng)為平面直角坐標系中的坐標伸縮變換,簡(jiǎn)稱(chēng)伸縮變換。

  2.極坐標系的概念:在平面內取一個(gè)定點(diǎn)O,叫做極點(diǎn);自極點(diǎn)O引一條射線(xiàn)Ox叫做極軸;再選定一個(gè)長(cháng)度單位、一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針?lè )较?,這樣就建立了一個(gè)極坐標系。

  3.點(diǎn)M的極坐標:設M是平面內一點(diǎn),極點(diǎn)O與點(diǎn)M的.距離|OM|叫做點(diǎn)M的極徑,記為;以極軸Ox為始邊,射線(xiàn)OM為終邊的xOM叫做點(diǎn)M的極角,記為。有序數對(,)叫做點(diǎn)M的極坐標,記為M(,).極坐標(,)與(,2k)(kZ)表示同一個(gè)點(diǎn)。極點(diǎn)O的坐標為(0,)(R).

  4.若0,則0,規定點(diǎn)(,)與點(diǎn)(,)關(guān)于極點(diǎn)對稱(chēng),即(,)與(,)表示同一點(diǎn)。如果規定0,02,那么除極點(diǎn)外,平面內的點(diǎn)可用唯一的極坐標(,)表示;同時(shí),極坐標(,)表示的點(diǎn)也是唯一確定的。

  5.極坐標與直角坐標的互化:2x2y2,xcos,yysin,tan(x0)x

  6.圓的極坐標方程:在極坐標系中,以極點(diǎn)為圓心,r為半徑的圓的極坐標方程是r;在極坐標系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標方程是2acos;在極坐標系中,以C(a,2)(a0)為圓心,a為半徑的圓的極坐標方程是2asin;

  7.在極坐標系中,(0)表示以極點(diǎn)為起點(diǎn)的一條射線(xiàn);(R)表示過(guò)極點(diǎn)的一條直線(xiàn).在極坐標系中,過(guò)點(diǎn)A(a,0)(a0),且垂直于極軸的直線(xiàn)l的極坐標方程是cosa.

  8.參數方程的概念:在平面直角坐標系中,如果曲線(xiàn)上任意一點(diǎn)的坐標x,y都是某個(gè)變數txf(t),并且對于t的每一個(gè)允許值,由這個(gè)方程所確定的點(diǎn)M(x,y)都在這條yg(t),曲線(xiàn)上,那么這個(gè)方程就叫做這條曲線(xiàn)的參數方程,聯(lián)系變數x,y的變數t叫做參變數,的函數簡(jiǎn)稱(chēng)參數。相對于參數方程而言,直接給出點(diǎn)的坐標間關(guān)系的方程叫做普通方程。xarcos,(為參數).

  9.圓(xa)(yb)r的參數方程可表示為ybrsin.xacos,x2y2(為參數).橢圓221(ab0)的參數方程可表示為abybsin.x2px2,2(t為參數).拋物線(xiàn)y2px的參數方程可表示為y2pt.xxotcos,經(jīng)過(guò)點(diǎn)MO(xo,yo),傾斜角為的直線(xiàn)l的參數方程可表示為(t為yyotsin.222參數).

  10.在建立曲線(xiàn)的參數方程時(shí),要注明參數及參數的取值范圍。在參數方程與普通方程的互化中,必須使x,y的取值范圍保持一致.

  高中數學(xué)知識點(diǎn)總結 7

  1.利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數.

  2.利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.

  3.反過(guò)來(lái),也可以利用導數由函數的單調性解決相關(guān)問(wèn)題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

  (2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的"x值不構成區間);

  (3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立.

  4.進(jìn)行集合的交、并、補運算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進(jìn)行求解。

  5.在應用條件時(shí),易A忽略是空集的情況

  6.你會(huì )用補集的思想解決有關(guān)問(wèn)題嗎?

  7.簡(jiǎn)單命題與復合命題有什么區別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

  8.你知道“否命題”與“命題的否定形式”的區別。

  9.求解與函數有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。

  10.判斷函數奇偶性時(shí),易忽略檢驗函數定義域是否關(guān)于原點(diǎn)對稱(chēng)。

  11.求一個(gè)函數的解析式和一個(gè)函數的反函數時(shí),易忽略標注該函數的定義域。

  12.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個(gè)函數存在反函數,此函數不一定單調。例如:。

  13.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法

  14. 求函數單調性時(shí),易錯誤地在多個(gè)單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示。

  15.求函數的值域必須先求函數的定義域。

  16.如何應用函數的單調性與奇偶性解題?

 、俦容^函數值的'大小;

 、诮獬橄蠛瘮挡坏仁;

 、矍髤档姆秶(恒成立問(wèn)題).這幾種基本應用你掌握了嗎?

  17.解對數函數問(wèn)題時(shí),你注意到真數與底數的限制條件了嗎?

  (真數大于零,底數大于零且不等于1)字母底數還需討論

  18.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應用掌握了嗎?如何利用二次函數求最值?

  19.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數的范圍。

  20.“實(shí)系數一元二次方程有實(shí)數解”轉化時(shí),你是否注意到:當時(shí),“方程有解”不能轉化為。若原題中沒(méi)有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

  利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數.

  利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.

  反過(guò)來(lái),也可以利用導數由函數的單調性解決相關(guān)問(wèn)題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

  (2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的"x值不構成區間);

  (3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立.

  高中數學(xué)知識點(diǎn)總結 8

  一集合

  1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個(gè)特性:確定性、互異性、無(wú)序性。3、集合的表示:

 。1)用大寫(xiě)字母表示集合:A,B…(2)集合的表示方法:

  a、列舉法:將集合中的元素一一列舉出來(lái){a,b,c}b、描述法:集合中元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合,xRx23c、維恩圖:用一條封閉曲線(xiàn)的內部表示.

  4、集合的分類(lèi):

 。1)有限集:含有有限個(gè)元素的集合(2)無(wú)限集:含有無(wú)限個(gè)元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:aA;aA注意:常用數集及其記法:

  非負整數集:(即自然數集)N正整數集:Nx或N+整數集:Z有理數集:Q實(shí)數集:R

  6、集合間的基本關(guān)系(1)“包含”關(guān)系子集

  定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說(shuō)這兩個(gè)集合有包含

  關(guān)系,稱(chēng)集合A是集合B的子集。記作:AB(或BA)

  注意:AB有兩種可能(1)A是B的一部分;

 。2)A與B是同一集合。

  B或BA反之:集合A不包含于集合B,或集合B不包含集合A,記作A(2)“包含”關(guān)系真子集

  如果集合AB,但存在元素xB且xA,則集合A是集合B的真子集,記作AB(或BA)

 。3“相等”關(guān)系:A=B“元素相同則兩集合相等”,如果AB同時(shí)BA那么A=B

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì)

 、偃魏我粋(gè)集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC

 、苡衝個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  7、集合的運算

  運算類(lèi)型交集并集定義由所有屬于A(yíng)且屬于B由所有屬于集合A或屬的元素所組成的集合,于集合B的元素所組成叫做A,B的交集.記作的集合,叫做A,B的并AB(讀作‘A交B’)集.記作:AB(讀作‘A并B’)補集全集:一般,若一個(gè)集合含有我們所研究問(wèn)題中的所有元素,我們就稱(chēng)這個(gè)集合為全集,記作:U設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)記作CSA,韋恩圖示ABABSA圖1圖2CU(CUA)A性質(zhì)A∩A=AA∩Φ=ΦA∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函數1.函數的概念:記法y=f(x),x∈A.

  2.函數的三要素:定義域、值域、對應法則

  3.函數的表示方法:(1)解析法:(2)圖象法:(3)列表法:4.函數的基本性質(zhì)

  a、函數解析式子的求法

 。1)代入法:(2)待定系數法:(3)換元法:(4)拼湊法:

  b、定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。(1)分式的分母不等于零;

  (2)偶次方根的被開(kāi)方數大于等于零;

  (3)對數式的'真數必須大于零;(4)零次冪式的底數不等于零;(5)分段函數的各段范圍取并集;

  (6)如果函數是由一些基本函數通過(guò)四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合;

  (7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.c、相同函數的判斷方法;定義域一致②對應法則一致

  d.區間的概念:

  e.值域(先考慮其定義域)5.分段函數6.映射的概念

  對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:

  (1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。注意:函數是特殊的映射。7、函數的單調性(局部性質(zhì))(1)增減函數定義(2)圖象的特點(diǎn)

  如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的

 。3)函數單調區間與單調性的判定方法(A)定義法:○1取值;○2作差;○3變形;○4定號;○5結論.(B)圖象法(從圖象上看升降)

  (C)復合函數的單調性:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集.

  8、函數的奇偶性(整體性質(zhì))(1)奇、偶函數定義

 。2)具有奇偶性的函數的圖象的特征

  偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).(3)利用定義判斷函數奇偶性的步驟:

  a、首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);若是不對稱(chēng),則是非奇非偶的函數;若對稱(chēng),則進(jìn)行下面判斷;b、確定f(-x)與f(x)的關(guān)系;

  c、作出相應結論:若f(-x)=f(x),則f(x)是偶函數;

  若f(-x)=-f(x),則f(x)是奇函數.

  注意:函數定義域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的前提條件.首先看函數的定義域是否關(guān)于原點(diǎn)對稱(chēng),若不對稱(chēng)則函數是非奇非偶函數.(4)函數的奇偶性與單調性

  奇函數在關(guān)于原點(diǎn)對稱(chēng)的區間上有相同的單調性;偶函數在關(guān)于原點(diǎn)對稱(chēng)的區間上有相反的單調性。(5)若已知是奇、偶函數可以直接用特值9、基本初等函數

  一、一次函數

  二、二次函數:二次函數的圖象與性質(zhì),注意:二次函數值域求法三、指數函數(一)指數

  1、有理指數冪的運算法則2、根式的概念3、分數指數冪

  正數的分數指數冪的

  anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1)

 。ǘ┲笖岛瘮档男再|(zhì)及其特點(diǎn)

  1、指數函數的概念:一般地,函數yax(a0,且a1)叫做指數函數,其中x是自變量,

  函數的定義域為R.

  2、指數函數的圖象和性質(zhì)a>16540

  注意:換底公式

  logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用換底公式推導下面的結論(1)logambn.

 。ㄈ⿲岛瘮

  1、對數函數的概念:函數ylogax(a0,且a1)叫做對數函數,其中x是自變量,

  函數的定義域是(0,+∞).

  2、對數函數的性質(zhì):a>10

  高中數學(xué)知識點(diǎn)總結 9

  高考數學(xué)導數知識點(diǎn)

 。ㄒ唬⿲档谝欢x

  設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時(shí),相應地函數取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f(x0),即導數第一定義

 。ǘ⿲档诙x

  設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時(shí),相應地函數變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f(x0),即導數第二定義

 。ㄈ⿲Ш瘮蹬c導數

  如果函數y = f(x)在開(kāi)區間I內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間I內可導。這時(shí)函數y = f(x)對于區間I內的每一個(gè)確定的x值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數y = f(x)的導函數,記作y,f(x),dy/dx,df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。

 。ㄋ模﹩握{性及其應用

  1。利用導數研究多項式函數單調性的一般步驟

 。1)求f¢(x)

 。2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數

  2。用導數求多項式函數單調區間的一般步驟

 。1)求f¢(x)

 。2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

  高中數學(xué)重難點(diǎn)知識點(diǎn)

  高中數學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習兩本書(shū)。

  必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質(zhì)及應用(比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線(xiàn)面角和面面角

  這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識較強。這部分知識高考占22———27分

  2、直線(xiàn)方程:高考時(shí)不單獨命題,易和圓錐曲線(xiàn)結合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學(xué)占到5分

  必修四:1、三角函數:(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數混合起來(lái)考查

  2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線(xiàn)結合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學(xué)占到13分左右2、數列:高考必考,17———22分3、不等式:(線(xiàn)性規劃,聽(tīng)課時(shí)易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

  高中數學(xué)知識點(diǎn)大全

  一、集合與簡(jiǎn)易邏輯

  1、集合的元素具有確定性、無(wú)序性和互異性。

  2、對集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

  5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

  原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)。反證法分為三步:假設、推矛、得果。

  6、充要條件

  二、函數

  1、指數式、對數式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合中的元素必有像,但第二個(gè)集合中的元素不一定有原像(中元素的像有且僅有下一個(gè),但中元素的原像可能沒(méi)有,也可任意個(gè));函數是“非空數集上的映射”,其中“值域是映射中像集的子集”。

 。2)函數圖像與軸垂線(xiàn)至多一個(gè)公共點(diǎn),但與軸垂線(xiàn)的公共點(diǎn)可能沒(méi)有,也可任意個(gè)。

 。3)函數圖像一定是坐標系中的曲線(xiàn),但坐標系中的曲線(xiàn)不一定能成為函數圖像。

  3、單調性和奇偶性

 。1)奇函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性完全相同。

  偶函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性恰恰相反。

 。2)復合函數的單調性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。

  復合函數的奇偶性特點(diǎn)是:“內偶則偶,內奇同外”。復合函數要考慮定義域的變化。(即復合有意義)

  4、對稱(chēng)性與周期性(以下結論要消化吸收,不可強記)

 。1)函數與函數的圖像關(guān)于直線(xiàn)(軸)對稱(chēng)。

  推廣一:如果函數對于一切,都有成立,那么的圖像關(guān)于直線(xiàn)(由“和的一半確定”)對稱(chēng)。

  推廣二:函數,的圖像關(guān)于直線(xiàn)對稱(chēng)。

 。2)函數與函數的圖像關(guān)于直線(xiàn)(軸)對稱(chēng)。

 。3)函數與函數的圖像關(guān)于坐標原點(diǎn)中心對稱(chēng)。

  三、數列

  1、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關(guān)系

  2、等差數列中

 。1)等差數列公差的取值與等差數列的單調性。

 。2)也成等差數列。

 。3)兩等差數列對應項和(差)組成的新數列仍成等差數列。

 。4)仍成等差數列。

 。5)“首正”的遞等差數列中,前項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前項和的最小值是所有非正項之和;

 。6)有限等差數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和“奇數項和=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和—偶數項和”=此數列的中項。

 。7)兩數的等差中項惟一存在。在遇到三數或四數成等差數列時(shí),?紤]選用“中項關(guān)系”轉化求解。

 。8)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說(shuō)數列是等差數列的充要條件主要有這五種形式)。

  3、等比數列中:

 。1)等比數列的符號特征(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性。

 。2)兩等比數列對應項積(商)組成的新數列仍成等比數列。

 。3)“首大于1”的正值遞減等比數列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數列中,前項積的最小值是所有小于或等于1的項的積;

 。4)有限等比數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和“首項”加上“公比”與“偶數項和”積的和。

 。5)并非任何兩數總有等比中項。僅當實(shí)數同號時(shí),實(shí)數存在等比中項。對同號兩實(shí)數的等比中項不僅存在,而且有一對。也就是說(shuō),兩實(shí)數要么沒(méi)有等比中項(非同號時(shí)),如果有,必有一對(同號時(shí))。在遇到三數或四數成等差數列時(shí),常優(yōu)先考慮選用“中項關(guān)系”轉化求解。

 。6)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說(shuō)數列是等比數列的充要條件主要有這四種形式)。

  4、等差數列與等比數列的聯(lián)系

 。1)如果數列成等差數列,那么數列(總有意義)必成等比數列。

 。2)如果數列成等比數列,那么數列必成等差數列。

 。3)如果數列既成等差數列又成等比數列,那么數列是非零常數數列;但數列是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件。

 。4)如果兩等差數列有公共項,那么由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數。

  如果一個(gè)等差數列與一個(gè)等比數列有公共項順次組成新數列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,并構成新的`數列。

  5、數列求和的常用方法:

 。1)公式法:①等差數列求和公式(三種形式),

 、诘缺葦盗星蠛凸剑ㄈN形式),

 。2)分組求和法:在直接運用公式法求和有困難時(shí),常將“和式”中“同類(lèi)項”先合并在一起,再運用公式法求和。

 。3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數列前和公式的推導方法)。

 。4)錯位相減法:如果數列的通項是由一個(gè)等差數列的通項與一個(gè)等比數列的通項相乘構成,那么常選用錯位相減法,將其和轉化為“一個(gè)新的的等比數列的和”求解(注意:一般錯位相減后,其中“新等比數列的項數是原數列的項數減一的差”。ㄟ@也是等比數列前和公式的推導方法之一)。

 。5)裂項相消法:如果數列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),那么常選用裂項相消法求和

 。6)通項轉換法。

  四、三角函數

  1、終邊與終邊相同(的終邊在終邊所在射線(xiàn)上)。

  終邊與終邊共線(xiàn)(的終邊在終邊所在直線(xiàn)上)。

  終邊與終邊關(guān)于軸對稱(chēng)

  終邊與終邊關(guān)于軸對稱(chēng)

  終邊與終邊關(guān)于原點(diǎn)對稱(chēng)

  一般地:終邊與終邊關(guān)于角的終邊對稱(chēng)。

  與的終邊關(guān)系由“兩等分各象限、一二三四”確定。

  2、弧長(cháng)公式:,扇形面積公式:1弧度(1rad)。

  3、三角函數符號特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函數線(xiàn)的特征是:正弦線(xiàn)“站在軸上(起點(diǎn)在軸上)”、余弦線(xiàn)“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線(xiàn)“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數值的大小與單位圓上相應點(diǎn)的坐標之間的關(guān)系,‘正弦’‘縱坐標’、‘余弦’‘橫坐標’、‘正切’‘縱坐標除以橫坐標之商’”;務(wù)必記。?jiǎn)挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角

  5、三角函數同角關(guān)系中,平方關(guān)系的運用中,務(wù)必重視“根據已知角的范圍和三角函數的取值,精確確定角的范圍,并進(jìn)行定號”;

  6、三角函數誘導公式的本質(zhì)是:奇變偶不變,符號看象限。

  7、三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換。

  8、三角函數性質(zhì)、圖像及其變換:

 。1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性

  注意:正切函數、余切函數的定義域;絕對值對三角函數周期性的影響:一般說(shuō)來(lái),某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數又是偶函數的函數自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問(wèn)函數y=cos|x|,y=cos|x|是周期函數嗎?

 。2)三角函數圖像及其幾何性質(zhì):

 。3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

 。4)三角函數圖像的作法:三角函數線(xiàn)法、五點(diǎn)法(五點(diǎn)橫坐標成等差數列)和變換法。

  9、三角形中的三角函數:

 。1)內角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補,任意兩半角和與第三個(gè)角的半角總互余。銳角三角形三內角都是銳角三內角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

 。2)正弦定理:(R為三角形外接圓的半徑)。

 。3)余弦定理:常選用余弦定理鑒定三角形的類(lèi)型。

  五、向量

  1、向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點(diǎn)、終點(diǎn)及其坐標的特征。

  2、幾個(gè)概念:零向量、單位向量(與共線(xiàn)的單位向量是,平行(共線(xiàn))向量(無(wú)傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影(在上的投影是)。

  3、兩非零向量平行(共線(xiàn))的充要條件

  4、平面向量的基本定理:如果e1和e2是同一平面內的兩個(gè)不共線(xiàn)向量,那么對該平面內的任一向量a,有且只有一對實(shí)數,使a= e1+ e2。

  5、三點(diǎn)共線(xiàn);

  6、向量的數量積:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對應方程的根或不等式有意義范圍的端點(diǎn)值。

 。2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數變?yōu)檎,標根及奇穿過(guò)偶彈回);

 。3)含有兩個(gè)絕對值的不等式如何去絕對值?(一般是根據定義分類(lèi)討論、平方轉化或換元轉化);

 。4)解含參不等式常分類(lèi)等價(jià)轉化,必要時(shí)需分類(lèi)討論。注意:按參數討論,最后按參數取值分別說(shuō)明其解集,但若按未知數討論,最后應求并集。

  2、利用重要不等式以及變式等求函數的最值時(shí),務(wù)必注意a,b(或a,b非負),且“等號成立”時(shí)的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時(shí))。

  3、常用不等式有:(根據目標不等式左右的運算結構選用)

  a、b、c R,(當且僅當時(shí),取等號)

  4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質(zhì)法、綜合法、分析法

  5、含絕對值不等式的性質(zhì):

  6、不等式的恒成立,能成立,恰成立等問(wèn)題

 。1)恒成立問(wèn)題

  若不等式在區間上恒成立,則等價(jià)于在區間上

  若不等式在區間上恒成立,則等價(jià)于在區間上

 。2)能成立問(wèn)題

 。3)恰成立問(wèn)題

  若不等式在區間上恰成立,則等價(jià)于不等式的解集為。

  若不等式在區間上恰成立,則等價(jià)于不等式的解集為,

  七、直線(xiàn)和圓

  1、直線(xiàn)傾斜角與斜率的存在性及其取值范圍;直線(xiàn)方向向量的意義(或)及其直線(xiàn)方程的向量式((為直線(xiàn)的方向向量))。應用直線(xiàn)方程的點(diǎn)斜式、斜截式設直線(xiàn)方程時(shí),一般可設直線(xiàn)的斜率為k,但你是否注意到直線(xiàn)垂直于x軸時(shí),即斜率k不存在的情況?

  2、知直線(xiàn)縱截距,常設其方程為或;知直線(xiàn)橫截距,常設其方程為(直線(xiàn)斜率k存在時(shí),為k的倒數)或知直線(xiàn)過(guò)點(diǎn),常設其方程為。

 。2)直線(xiàn)在坐標軸上的截距可正、可負、也可為0。直線(xiàn)兩截距相等直線(xiàn)的斜率為—1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距互為相反數直線(xiàn)的斜率為1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距絕對值相等直線(xiàn)的斜率為或直線(xiàn)過(guò)原點(diǎn)。

 。3)在解析幾何中,研究?jì)蓷l直線(xiàn)的位置關(guān)系時(shí),有可能這兩條直線(xiàn)重合,而在立體幾何中一般提到的兩條直線(xiàn)可以理解為它們不重合。

  3、相交兩直線(xiàn)的夾角和兩直線(xiàn)間的到角是兩個(gè)不同的概念:夾角特指相交兩直線(xiàn)所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線(xiàn)性規劃中幾個(gè)概念:約束條件、可行解、可行域、目標函數、最優(yōu)解。

  5、圓的方程:最簡(jiǎn)方程;標準方程;

  6、解決直線(xiàn)與圓的關(guān)系問(wèn)題有“函數方程思想”和“數形結合思想”兩種思路,等價(jià)轉化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(cháng)、弦心距構成直角三角形,切線(xiàn)長(cháng)定理、割線(xiàn)定理、弦切角定理等等)的作用!”

 。1)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  如果點(diǎn)在圓外,那么上述直線(xiàn)方程表示過(guò)點(diǎn)兩切線(xiàn)上兩切點(diǎn)的“切點(diǎn)弦”方程。

  如果點(diǎn)在圓內,那么上述直線(xiàn)方程表示與圓相離且垂直于(為圓心)的直線(xiàn)方程,(為圓心到直線(xiàn)的距離)。

  7、曲線(xiàn)與的交點(diǎn)坐標方程組的解;

  過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當且僅當無(wú)平方項時(shí),為兩圓公共弦所在直線(xiàn)方程。

  八、圓錐曲線(xiàn)

  1、圓錐曲線(xiàn)的兩個(gè)定義,及其“括號”內的限制條件,在圓錐曲線(xiàn)問(wèn)題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線(xiàn)第一定義;如果涉及到其焦點(diǎn)、準線(xiàn)(一定點(diǎn)和不過(guò)該點(diǎn)的一定直線(xiàn))或離心率,那么將優(yōu)先選用圓錐曲線(xiàn)第二定義;涉及到焦點(diǎn)三角形的問(wèn)題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應用。

 。1)注意:①圓錐曲線(xiàn)第一定義與配方法的綜合運用;

 、趫A錐曲線(xiàn)第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線(xiàn)距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是小于1的正數,雙曲線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是大于1的正數,拋物線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是等于1。

  2、圓錐曲線(xiàn)的幾何性質(zhì):圓錐曲線(xiàn)的對稱(chēng)性、圓錐曲線(xiàn)的范圍、圓錐曲線(xiàn)的特殊點(diǎn)線(xiàn)、圓錐曲線(xiàn)的變化趨勢。其中,橢圓中、雙曲線(xiàn)中。

  重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準線(xiàn)等相互之間與坐標系無(wú)關(guān)的幾何性質(zhì)’”,尤其是雙曲線(xiàn)中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。

  3、在直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,有“函數方程思想”和“數形結合思想”兩種思路,等價(jià)轉化求解。特別是:

 、僦本(xiàn)與圓錐曲線(xiàn)相交的必要條件是他們構成的方程組有實(shí)數解,當出現一元二次方程時(shí),務(wù)必“判別式≥0”,尤其是在應用韋達定理解決問(wèn)題時(shí),必須先有“判別式≥0”。

 、谥本(xiàn)與拋物線(xiàn)(相交不一定交于兩點(diǎn))、雙曲線(xiàn)位置關(guān)系(相交的四種情況)的特殊性,應謹慎處理。

 、墼谥本(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,常與“弦”相關(guān),“平行弦”問(wèn)題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問(wèn)題關(guān)鍵是“韋達定理”或“小小直角三角形”或“點(diǎn)差法”、“長(cháng)度(弦長(cháng))”問(wèn)題關(guān)鍵是長(cháng)度(弦長(cháng))公式

 、苋绻谝粭l直線(xiàn)上出現“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應用“斜率”為橋梁轉化。

  4、要重視常見(jiàn)的尋求曲線(xiàn)方程的方法(待定系數法、定義法、直譯法、代點(diǎn)法、參數法、交軌法、向量法等),以及如何利用曲線(xiàn)的方程討論曲線(xiàn)的幾何性質(zhì)(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類(lèi)討論思想和等價(jià)轉化思想等),這是解析幾何的兩類(lèi)基本問(wèn)題,也是解析幾何的基本出發(fā)點(diǎn)。

  注意:①如果問(wèn)題中涉及到平面向量知識,那么應從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉化,還是選擇向量的代數形式進(jìn)行“摘帽子或脫靴子”轉化。

 、谇(xiàn)與曲線(xiàn)方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響。

 、墼谂c圓錐曲線(xiàn)相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數形結合(如角平分線(xiàn)的雙重身份)、“方程與函數性質(zhì)”化解析幾何問(wèn)題為代數問(wèn)題、“分類(lèi)討論思想”化整為零分化處理、“求值構造等式、求變量范圍構造不等關(guān)系”等等。

  九、直線(xiàn)、平面、簡(jiǎn)單多面體

  1、計算異面直線(xiàn)所成角的關(guān)鍵是平移(補形)轉化為兩直線(xiàn)的夾角計算

  2、計算直線(xiàn)與平面所成的角關(guān)鍵是作面的垂線(xiàn)找射影,或向量法(直線(xiàn)上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點(diǎn)到直線(xiàn)的距離,后虛擬直角三角形求解。注:一斜線(xiàn)與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線(xiàn)在平面上射影為角的平分線(xiàn)。

  3、空間平行垂直關(guān)系的證明,主要依據相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線(xiàn)面平行關(guān)系、線(xiàn)面垂直關(guān)系(三垂線(xiàn)定理及其逆定理)的橋梁作用。注意:書(shū)寫(xiě)證明過(guò)程需規范。

  4、直棱柱、正棱柱、平行六面體、長(cháng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側棱、側面、對角面、平行于底的截面的幾何體性質(zhì)。

  如長(cháng)方體中:對角線(xiàn)長(cháng),棱長(cháng)總和為,全(表)面積為,(結合可得關(guān)于他們的等量關(guān)系,結合基本不等式還可建立關(guān)于他們的不等關(guān)系式),

  如三棱錐中:側棱長(cháng)相等(側棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(cháng)相等(側面與底面所成相等)且頂點(diǎn)在底上在底面內頂點(diǎn)在底上射影為底面內心。

  5、求幾何體體積的常規方法是:公式法、割補法、等積(轉換)法、比例(性質(zhì)轉換)法等。注意:補形:三棱錐三棱柱平行六面體

  6、多面體是由若干個(gè)多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

  正多面體的每個(gè)面都是相同邊數的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

  7、球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式。它們都是球半徑及的函數。

  十、導數

  1、導數的意義:曲線(xiàn)在該點(diǎn)處的切線(xiàn)的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數的導數,C為常數)

  2、多項式函數的導數與函數的單調性

  在一個(gè)區間上(個(gè)別點(diǎn)取等號)在此區間上為增函數。

  在一個(gè)區間上(個(gè)別點(diǎn)取等號)在此區間上為減函數。

  3、導數與極值、導數與最值:

 。1)函數處有且“左正右負”在處取極大值;

  函數在處有且左負右正”在處取極小值。

  注意:①在處有是函數在處取極值的必要非充分條件。

 、谇蠛瘮禈O值的方法:先找定義域,再求導,找出定義域的分界點(diǎn),列表求出極值。特別是給出函數極大(。┲档臈l件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記。

 、蹎握{性與最值(極值)的研究要注意列表!

 。2)函數在一閉區間上的最大值是此函數在此區間上的極大值與其端點(diǎn)值中的“最大值”

  函數在一閉區間上的最小值是此函數在此區間上的極小值與其端點(diǎn)值中的“最小值”;

  注意:利用導數求最值的步驟:先找定義域再求出導數為0及導數不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導數為0的點(diǎn)對應函數值的大小,其中最大的就是最大值,最小就為最小。

  高中數學(xué)知識點(diǎn)總結 10

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  (1)定義:如果集合A的任何一個(gè)元素都是集合B的'元素,我們說(shuō)這兩個(gè)集合有包含關(guān)系,稱(chēng)集合A是集合B的子集。記作:(或BA)

  注意:有兩種可能(1)A是B的一部分,;

  (2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA) 或若集合A?B,存在xB且x A,則稱(chēng)集合A是集合B的真子集。

 、廴绻鸄?B, B?C ,那么A?C

 、 如果A?B 同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  高中數學(xué)知識點(diǎn)總結 11

  1.等差數列的定義

  如果一個(gè)數列從第2項起,每一項與它的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示.

  2.等差數列的通項公式

  若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

  3.等差中項

  如果A=(a+b)/2,那么A叫做a與b的等差中項.

  4.等差數列的常用性質(zhì)

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.

  (4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數,則S偶-S奇=nd/2;

  若n為奇數,則S奇-S偶=a中(中間項).

  注意:

  一個(gè)推導

  利用倒序相加法推導等差數列的前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

 、+②得:Sn=n(a1+an)/2

  兩個(gè)技巧

  已知三個(gè)或四個(gè)數組成等差數列的一類(lèi)問(wèn)題,要善于設元.

  (1)若奇數個(gè)數成等差數列且和為定值時(shí),可設為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數個(gè)數成等差數列且和為定值時(shí),可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進(jìn)行對稱(chēng)設元.

  四種方法

  等差數列的判斷方法

  (1)定義法:對于n≥2的任意自然數,驗證an-an-1為同一常數;

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:后兩種方法只能用來(lái)判斷是否為等差數列,而不能用來(lái)證明等差數列.

  5.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復遇到的,而且是以各種各樣的.問(wèn)題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關(guān)問(wèn)題著(zhù)手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內容和功能,通過(guò)對問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  6.判定兩個(gè)平面平行的方法:

  (1)根據定義--證明兩平面沒(méi)有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線(xiàn)。

  7.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內的直線(xiàn)必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行”;

  (4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等;

  (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  8.乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

  |a-b||a|-|b| -|a|a|a|

  一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

  根與系數的關(guān)系 X1+X2=-b/a X1__X2=c/a 注:韋達定理

  判別式

  2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

  2-4ac0 注:方程有兩個(gè)不等的實(shí)根

  2-4ac0 注:方程沒(méi)有實(shí)根,有共軛復數根

  9.三角函數公式

  兩角和公式

  in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

  cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

  tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

  ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數列前n項和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  10.圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

  拋物線(xiàn)標準方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側面積 S=c__h 斜棱柱側面積 S=c__h

  正棱錐側面積 S=1/2c__h 正棱臺側面積 S=1/2(c+c)h

  圓臺側面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi__r2

  圓柱側面積 S=c__h=2pi__h 圓錐側面積 S=1/2__c__l=pi__r__l

  弧長(cháng)公式 l=a__r a是圓心角的弧度數r 0 扇形面積公式 s=1/2__l__r

  錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h

  斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長(cháng)

  柱體體積公式 V=s__h 圓柱體 V=pi__r2h

  11.通項公式的求法:

  (1)構造等比數列:凡是出現關(guān)于后項和前項的一次遞推式都可以構造等比數列求通項公式;

  (2)構造等差數列:遞推式不能構造等比數列時(shí),構造等差數列;

  (3)遞推:即按照后項和前項的對應規律,再往前項推寫(xiě)對應式。

  已知遞推公式求通項常見(jiàn)方法:

 、僖阎猘1=a,an+1=qan+b,求an時(shí),利用待定系數法求解,其關(guān)鍵是確定待定系數,使an+1 +=q(an+)進(jìn)而得到。

 、谝阎猘1=a,an=an-1+f(n)(n2),求an時(shí),利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

 、垡阎猘1=a,an=f(n)an-1(n2),求an時(shí),利用累乘法求解。

  高中數學(xué)知識點(diǎn)總結 12

  什么是不等式?

  一般地,用純粹的大于號“>”、小于號“<”連接的不等式稱(chēng)為嚴格不等式,用不小于號(大于或等于號)“≥”、不大于號(小于或等于號)“≤”連接的不等式稱(chēng)為非嚴格不等式,或稱(chēng)廣義不等式?偟膩(lái)說(shuō),用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

  通常不等式中的數是實(shí)數,字母也代表實(shí)數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達一個(gè)命題,也可以表示一個(gè)問(wèn)題。

  數學(xué)知識點(diǎn)1、不等式性質(zhì)比較大小方法:

 。1)作差比較法(2)作商比較法

  不等式的基本性質(zhì)

 、賹ΨQ(chēng)性:a > b,b > a

 、趥鬟f性:a > b,b > ca > c

 、劭杉有裕篴 > b a + c > b + c

 、芸煞e性:a > b,c > 0,ac > bc

 、菁臃ǚ▌t:a > b,c > d,a + c > b + d

 、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd

 、叱朔椒▌t:a > b > 0,an > bn(n∈N)

 、嚅_(kāi)方法則:a > b > 0

  數學(xué)知識點(diǎn)2、算術(shù)平均數與幾何平均數定理:

 。1)如果a、b∈R,那么a2 + b2 ≥2ab;(當且僅當a=b時(shí)等號)

 。2)如果a、b∈R+,那么(當且僅當a=b時(shí)等號)推廣:

  如果為實(shí)數,則重要結論

 。1)如果積xy是定值P,那么當x=y時(shí),和x+y有最小值2;

 。2)如果和x+y是定值S,那么當x=y時(shí),和xy有最大值S2/4。

  數學(xué)知識點(diǎn)3、證明不等式的`常用方法:

  比較法:比較法是最基本、最重要的方法。

  當不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當不等式的兩邊都是正數且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作平方差。

  綜合法:從已知或已證明過(guò)的不等式出發(fā),根據不等式的性質(zhì)推導出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。

  分析法:不等式兩邊的聯(lián)系不夠清楚,通過(guò)尋找不等式成立的充分條件,逐步將欲證的不等式轉化,直到尋找到易證或已知成立的結論。

  高中數學(xué)知識點(diǎn)總結 13

  導數及其應用

  一.導數概念的引入

  1.導數的物理意義:瞬時(shí)速率。一般的,函數yf(x)在xx0處的瞬時(shí)變化率是

  x0limf(x0x)f(x0),

  x我們稱(chēng)它為函數yf(x)在xx0處的導數,記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高臺跳水運動(dòng)中,運動(dòng)員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:

  s)存在函數關(guān)系

  h(t)4.9t26.5t10

  運動(dòng)員在t=2s時(shí)的瞬時(shí)速度是多少?解:根據定義

  vh(2)limh(2x)h(2)13.1

  x0x即該運動(dòng)員在t=2s是13.1m/s,符號說(shuō)明方向向下

  2.導數的幾何意義:曲線(xiàn)的切線(xiàn).通過(guò)圖像,我們可以看出當點(diǎn)Pn趨近于P時(shí),直線(xiàn)PT與

  曲線(xiàn)相切。容易知道,割線(xiàn)PPn的斜率是knf(xn)f(x0),當點(diǎn)Pn趨近于P時(shí),

  xnx0函數yf(x)在xx0處的導數就是切線(xiàn)PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.導函數:當x變化時(shí),f(x)便是x的一個(gè)函數,我們稱(chēng)它為f(x)的導函數.yf(x)的導函數有時(shí)也記作y,即f(x)lim

  二.導數的計算

  1.函數yf(x)c的導數2.函數yf(x)x的導數3.函數yf(x)x的導數

  2x0f(xx)f(x)

  x

  4.函數yf(x)1的導數x基本初等函數的導數公式:

  1若f(x)c(c為常數),則f(x)0;

  2若f(x)x,則f(x)x1;

  3若f(x)sinx,則f(x)cosx

  4若f(x)cosx,則f(x)sinx;

  5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e

  xx1xlna18若f(x)lnx,則f(x)

  xx7若f(x)loga,則f(x)導數的運算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2復合函數求導

  yf(u)和ug(x),稱(chēng)則y可以表示成為x的函數,即yf(g(x))為一個(gè)復合函數yf(g(x))g(x)

  三.導數在研究函數中的應用

  1.函數的單調性與導數:

  一般的,函數的單調性與其導數的正負有如下關(guān)系:

  在某個(gè)區間(a,b)內,如果f(x)0,那么函數yf(x)在這個(gè)區間單調遞增;如果f(x)0,那么函數yf(x)在這個(gè)區間單調遞減.2.函數的極值與導數

  極值反映的是函數在某一點(diǎn)附近的大小情況.求函數yf(x)的極值的方法是:

  (1)如果在x0附近的左側f(wàn)(x)0,右側f(wàn)(x)0,那么f(x0)是極大值;

  (2)如果在x0附近的左側f(wàn)(x)0,右側f(wàn)(x)0,那么f(x0)是極小值;

  4.函數的最大(小)值與導數

  函數極大值與最大值之間的關(guān)系.

  求函數yf(x)在[a,b]上的最大值與最小值的步驟

 。1)求函數yf(x)在(a,b)內的極值;

 。2)將函數yf(x)的各極值與端點(diǎn)處的函數值f(a),f(b)比較,其中最大的是一個(gè)最大值,最小的是最小值.

  四.生活中的優(yōu)化問(wèn)題

  利用導數的知識,求函數的最大(小)值,從而解決實(shí)際問(wèn)題

  第二章推理與證明

  考點(diǎn)一合情推理與類(lèi)比推理

  根據一類(lèi)事物的部分對象具有某種性質(zhì),退出這類(lèi)事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過(guò)程,它屬于合情推理

  根據兩類(lèi)不同事物之間具有某些類(lèi)似(或一致)性,推測其中一類(lèi)事物具有與另外一類(lèi)事物類(lèi)似的性質(zhì)的.推理,叫做類(lèi)比推理.

  類(lèi)比推理的一般步驟:

  (1)找出兩類(lèi)事物的相似性或一致性;

  (2)用一類(lèi)事物的性質(zhì)去推測另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想);

  (3)一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的如果兩個(gè)事物在某些性質(zhì)上相同或相似,那么他們在另一寫(xiě)性質(zhì)上也可能相同或類(lèi)似,類(lèi)比的結論可能是真的

  (4)一般情況下,如果類(lèi)比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類(lèi)比得出的命題越可靠.

  考點(diǎn)二演繹推理(俗稱(chēng)三段論)

  由一般性的命題推出特殊命題的過(guò)程,這種推理稱(chēng)為演繹推理.

  考點(diǎn)三數學(xué)歸納法

  1.它是一個(gè)遞推的數學(xué)論證方法.

  2.步驟:A.命題在n=1(或n0)時(shí)成立,這是遞推的基礎;B.假設在n=k時(shí)命題成立C.證明n=k+1時(shí)命題也成立,

  完成這兩步,就可以斷定對任何自然數(或n>=n0,且nN)結論都成立。

  考點(diǎn)三證明

  1.反證法:

  2.分析法:

  3.綜合法:

  第一章數系的擴充和復數的概念考點(diǎn)一:復數的概念

  (1)復數:形如abi(aR,bR)的數叫做復數,a和b分別叫它的實(shí)部和虛部.

  (2)分類(lèi):復數abi(aR,bR)中,當b0,就是實(shí)數;b0,叫做虛數;當a0,b0時(shí),叫做純虛數.

  (3)復數相等:如果兩個(gè)復數實(shí)部相等且虛部相等就說(shuō)這兩個(gè)復數相等.

  (4)共軛復數:當兩個(gè)復數實(shí)部相等,虛部互為相反數時(shí),這兩個(gè)復數互為共軛復數.

  (5)復平面:建立直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部分叫做虛軸。

  (6)兩個(gè)實(shí)數可以比較大小,但兩個(gè)復數如果不全是實(shí)數就不能比較大小。

  高中數學(xué)知識點(diǎn)總結 14

  1.萬(wàn)能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

  2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

  3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  向量公式:

  1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|

  2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)

  3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)

  5.空間向量:同上推論(提示:向量a={x,y,z})

  6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

  7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

  高中數學(xué)知識點(diǎn)總結 15

  數學(xué)立體幾何知識點(diǎn)

  1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì )說(shuō)明共點(diǎn)、共線(xiàn)、共面問(wèn)題。

  能夠用斜二測法作圖。

  2.空間兩條直線(xiàn)的位置關(guān)系:平行、相交、異面的概念;

  會(huì )求異面直線(xiàn)所成的角和異面直線(xiàn)間的距離;證明兩條直線(xiàn)是異面直線(xiàn)一般用反證法。

  3.直線(xiàn)與平面

 、傥恢藐P(guān)系:平行、直線(xiàn)在平面內、直線(xiàn)與平面相交。

 、谥本(xiàn)與平面平行的判斷方法及性質(zhì),判定定理是證明平行問(wèn)題的依據。

 、壑本(xiàn)與平面垂直的證明方法有哪些?

 、苤本(xiàn)與平面所成的角:關(guān)鍵是找它在平面內的射影,范圍是

 、萑咕(xiàn)定理及其逆定理:每年高考試題都要考查這個(gè)定理. 三垂線(xiàn)定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線(xiàn)垂直,確定二面角的平面角,確定點(diǎn)到直線(xiàn)的垂線(xiàn).

  4.平面與平面

  (1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)

  (2)掌握平面與平面平行的證明方法和性質(zhì)。

  (3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據性質(zhì)定理,可以證明線(xiàn)面垂直。

  (4)兩平面間的距離問(wèn)題→點(diǎn)到面的距離問(wèn)題→

  (5)二面角。二面角的平面交的作法及求法:

 、俣x法,一般要利用圖形的對稱(chēng)性;一般在計算時(shí)要解斜三角形;

 、诖咕(xiàn)、斜線(xiàn)、射影法,一般要求平面的垂線(xiàn)好找,一般在計算時(shí)要解一個(gè)直角三角形。

 、凵溆懊娣e法,一般是二面交的兩個(gè)面只有一個(gè)公共點(diǎn),兩個(gè)面的交線(xiàn)不容易找到時(shí)用此法。

  高中數學(xué)立體幾何知識點(diǎn)

  數學(xué)知識點(diǎn)1、柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖

  是一個(gè)矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。

  (7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  數學(xué)知識點(diǎn)2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(cháng)度;俯視圖反映了物體的長(cháng)度和寬度;側視圖反映了物體的高度和寬度。

  數學(xué)知識點(diǎn)3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法

  斜二測畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;

 、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。

  快速提高數學(xué)成績(jì)的方法

  1、運算是學(xué)好數學(xué)的基本功.初中階段是培養數學(xué)運算能力的黃金時(shí)期,初中代數的主要內容都和運算有關(guān),如有初中數學(xué)理數的運算、整式的運算、因式分解、分式的運算、根式的`運算和解方程.初中運算能力不過(guò)關(guān),會(huì )直接影響以后數學(xué)的學(xué)習。

  2、做完一節的全部練習后,對照答案進(jìn)行批改.千萬(wàn)別做一道對一道的答案,因為這樣會(huì )造成思維中斷和對答案的依賴(lài)心理;

  先易后難,遇到不會(huì )的題一定要先跳過(guò)去,以平穩的速度過(guò)一遍所有題目,先徹底解決會(huì )做的初中數學(xué);不會(huì )的題過(guò)多時(shí),千萬(wàn)別急躁、泄氣,其實(shí)你認為困難的題,對其他人來(lái)講也是如此,只不過(guò)需要點(diǎn)時(shí)間和耐心;對于例題,有兩種處理方式:“先做后看”與“先看后測”。

  3、最重要就是興趣問(wèn)題,學(xué)習興趣是一件非常重要的事情,如何培養我們的學(xué)習興趣呢?首先,我們自己要做的就是調整好我們的情緒,很多同學(xué)一提起數學(xué)這兩個(gè)字,負面情緒馬上出現,這樣,不用其他人,你自己已經(jīng)把自己給放棄了!因此,想學(xué)好初中數學(xué),最重要的是調整好自己的情緒,只有有了積極的情緒,才會(huì )有高效率的學(xué)習。

  高中數學(xué)知識點(diǎn)總結 16

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;

  公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:

  直線(xiàn)與直線(xiàn)—平行、相交、異面;

  直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);

  平面與平面—平行、相交。

  3、異面直線(xiàn):

  平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);

  所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);

  兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);

  異面直線(xiàn)不同在任何一個(gè)平面內。

  求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角

  二、空間中的平行關(guān)系

  1、直線(xiàn)與平面平行(核心)

  定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)

  判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)

  性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行

  2、平面與平面平行

  定義:兩個(gè)平面沒(méi)有公共點(diǎn)

  判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)

  三、空間中的垂直關(guān)系

  1、直線(xiàn)與平面垂直

  定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直

  判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的.直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直

  性質(zhì):垂直于同一直線(xiàn)的兩平面平行

  推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線(xiàn)和平面所成的角:【0,90】度,平面內的一條斜線(xiàn)和它在平面內的射影說(shuō)成的銳角,特別規定垂直90度,在平面內或者平行0度

  2、平面與平面垂直

  定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)

  判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直

  性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直

  高中數學(xué)知識點(diǎn)總結 17

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx(k為常數,k≠0)

  二、一次函數的性質(zhì):

  1.y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實(shí)數b取任何實(shí)數)

  2.當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  1.作法與圖形:通過(guò)如下3個(gè)步驟

 。1)列表;

 。2)描點(diǎn);

 。3)連線(xiàn),可以作出一次函數的圖像——一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  2.性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b.(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  3.k,b與函數圖像所在象限:

  當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限

  四、確定一次函數的表達式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的.一次函數的表達式。

 。1)設一次函數的表達式(也叫解析式)為y=kx+b.

 。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b.所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

 。3)解這個(gè)二元一次方程,得到k,b的值。

 。4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1.當時(shí)間t一定,距離s是速度v的一次函數。s=vt.

  2.當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S.g=S-ft.

  六、常用公式:(不全,希望有人補充)

  1.求函數圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線(xiàn)段的中點(diǎn):|x1-x2|/2

  3.求與y軸平行線(xiàn)段的中點(diǎn):|y1-y2|/2

  4.求任意線(xiàn)段的長(cháng):√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

  高中數學(xué)知識點(diǎn)總結 18

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,3、a—邊長(cháng),S=6a2,V=a3

  4、長(cháng)方體a—長(cháng),b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱錐S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圓柱r—底半徑,h—高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)

  11、r—底半徑h—高V=πr^2h/3

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

  13、球r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)

  二面角和二面角的平面角

 、俣娼堑亩x:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

 、诙娼堑.平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角。

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內作垂直于棱的射線(xiàn)得到平面角

  垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角

  高中數學(xué)知識點(diǎn)總結 19

  一、向量的基本概念

  1、向量:既有大小又有方向的量叫做向量。物理學(xué)中又叫做矢量。如力、速度、加速度、位移就是向量。

  2、平行向量:方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線(xiàn)向量。

  3、相等向量:長(cháng)度相等且方向相同的向量叫做相等向量。

  二、對于向量概念需注意

  1、向量是區別于數量的一種量,既有大小,又有方向,任意兩個(gè)向量不能比較大小,只可以判斷它們是否相等,但向量的?梢员容^大小。

  2、向量共線(xiàn)與表示它們的有向線(xiàn)段共線(xiàn)不同。向量共線(xiàn)時(shí),表示向量的有向線(xiàn)段可以是平行的,不一定在同一條直線(xiàn)上;而有向線(xiàn)段共線(xiàn)則是指線(xiàn)段必須在同一條直線(xiàn)上。

  3、由向量相等的定義可知,對于一個(gè)向量,只要不改變它的大小和方向,它是可以任意平行移動(dòng)的,因此用有向線(xiàn)段表示向量時(shí),可以任意選取有向線(xiàn)段的起點(diǎn),由此也可得到:任意一組平行向量都可以平移到同一條直線(xiàn)上。

  三、求函數的單調性:

  利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

  四、求函數的極值:

  設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的'點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數f(x)的極小值(或極大值)。

  五、求函數的值與最小值:

  如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是一定的。

  高中數學(xué)必修五知識點(diǎn)歸納有哪些?

  高中數學(xué)必修五知識點(diǎn)歸納如下:

  1、偶次方根的被開(kāi)方數不小于零。

  2、對應、映射、函數三個(gè)概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

  3、若題設給出復合函數f[g(x)]的表達式時(shí),可用換元法求函數f(x)的表達式,這時(shí)必須求出g(x)的值域,這相當于求函數的定義域。

  4、反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。

  5、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時(shí)需要將函數化簡(jiǎn)或應用定義的等價(jià)形式。

  高中數學(xué)知識點(diǎn)總結 20

  考點(diǎn)一、映射的概念

  1.了解對應大千世界的對應共分四類(lèi),分別是:一對一多對一一對多多對多

  2.映射:設A和B是兩個(gè)非空集合,如果按照某種對應關(guān)系f,對于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對應,那么,就稱(chēng)對應f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對應,簡(jiǎn)稱(chēng)“對一”的對應.包括:一對一多對一

  考點(diǎn)二、函數的概念

  1.函數:設A和B是兩個(gè)非空的數集,如果按照某種確定的對應關(guān)系f,對于集合A中的任意一個(gè)數x,在集合B中都存在確定的數y與之對應,那么,就稱(chēng)對應f:A→B為集合A到集合B的一個(gè)函數.記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數的定義域;與x的值相對應的y的值函數值,函數值的集合叫做函數的值域.函數是特殊的映射,是非空數集A到非空數集B的映射.

  2.函數的三要素:定義域、值域、對應關(guān)系.這是判斷兩個(gè)函數是否為同一函數的依據.

  3.區間的概念:設a,bR,且a

 、伲╝,b)={xa

 、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點(diǎn)三、函數的表示方法

  1.函數的三種表示方法列表法圖象法解析法

  2.分段函數:定義域的不同部分,有不同的對應法則的函數.注意兩點(diǎn):①分段函數是一個(gè)函數,不要誤認為是幾個(gè)函數.②分段函數的定義域是各段定義域的`并集,值域是各段值域的并集.

  考點(diǎn)四、求定義域的幾種情況

 、偃鬴(x)是整式,則函數的定義域是實(shí)數集R;

 、谌鬴(x)是分式,則函數的定義域是使分母不等于0的實(shí)數集;

 、廴鬴(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實(shí)數集合;

 、苋鬴(x)是對數函數,真數應大于零.

 、.因為零的零次冪沒(méi)有意義,所以底數和指數不能同時(shí)為零.

 、奕鬴(x)是由幾個(gè)部分的數學(xué)式子構成的,則函數的定義域是使各部分式子都有意義的實(shí)數集合;

 、呷鬴(x)是由實(shí)際問(wèn)題抽象出來(lái)的函數,則函數的定義域應符合實(shí)際問(wèn)題

  高中數學(xué)知識點(diǎn)總結 21

  定義域

  (高中函數定義)設A,B是兩個(gè)非空的數集,如果按某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A--B為集合A到集合B的一個(gè)函數,記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數的定義域;

  值域

  名稱(chēng)定義

  函數中,應變量的取值范圍叫做這個(gè)函數的值域函數的值域,在數學(xué)中是函數在定義域中應變量所有值的集合

  常用的求值域的方法

  (1)化歸法;(2)圖象法(數形結合),

  (3)函數單調性法,

  (4)配方法,(5)換元法,(6)反函數法(逆求法),(7)判別式法,(8)復合函數法,(9)三角代換法,(10)基本不等式法等

  關(guān)于函數值域誤區

  定義域、對應法則、值域是函數構造的三個(gè)基本元件。平時(shí)數學(xué)中,實(shí)行定義域優(yōu)先的原則,無(wú)可置疑。然而事物均具有二重性,在強化定義域問(wèn)題的`同時(shí),往往就削弱或談化了,對值域問(wèn)題的探究,造成了一手硬一手軟,使學(xué)生對函數的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉化之中(典型的例子是互為反函數定義域與值域的相互轉化)。如果函數的值域是無(wú)限集的話(huà),那么求函數值域不總是容易的,反靠不等式的運算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數的奇偶性、單調性、有界性、周期性來(lái)考慮函數的取值情況。才能獲得正確答案,從這個(gè)角度來(lái)講,求值域的問(wèn)題有時(shí)比求定義域問(wèn)題難,實(shí)踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數本質(zhì)的認識。

  范圍與值域相同嗎?

  范圍與值域是我們在學(xué)習中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。值域是所有函數值的集合(即集合中每一個(gè)元素都是這個(gè)函數的取值),而范圍則只是滿(mǎn)足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿(mǎn)足這個(gè)條件)。也就是說(shuō):值域是一個(gè)范圍,而范圍卻不一定是值域。

【高中數學(xué)知識點(diǎn)總結】相關(guān)文章:

高中數學(xué)的知識點(diǎn)總結04-10

高中數學(xué)導數知識點(diǎn)總結02-11

高中數學(xué)全部知識點(diǎn)總結02-20

高中數學(xué)知識點(diǎn)總結05-15

高中數學(xué)知識點(diǎn)總結09-22

高中數學(xué)基本的知識點(diǎn)總結09-28

高中數學(xué)知識點(diǎn)的總結12-19

高中數學(xué)復數知識點(diǎn)總結04-16

高中數學(xué)知識點(diǎn)的總結03-13

高中數學(xué)知識點(diǎn)總結最新05-06