81国产精品久久久久久久久久,午夜一区二区三区视频,国产伦精品一区二区免费,一区二区三区网址,亚洲欧美日韩精品永久在线,中文字幕国产一区二区三区,精品国产高清一区二区三区

初中數學(xué)知識點(diǎn)總結

時(shí)間:2025-06-12 17:06:06 銀鳳 知識點(diǎn)總結 我要投稿

初中數學(xué)知識點(diǎn)總結

  總結是把一定階段內的有關(guān)情況分析研究,做出有指導性結論的書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,快快來(lái)寫(xiě)一份總結吧?偨Y怎么寫(xiě)才是正確的呢?下面是小編幫大家整理的初中數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。

初中數學(xué)知識點(diǎn)總結

  初中數學(xué)知識點(diǎn)總結 1

  知識點(diǎn)總結

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

 。1)平行四邊形的對邊平行且相等;

 。2)平行四邊形的鄰角互補,對角相等;

 。3)平行四邊形的對角線(xiàn)互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類(lèi):與四邊形的對邊有關(guān)

 。1)兩組對邊分別平行的`四邊形是平行四邊形;

 。2)兩組對邊分別相等的四邊形是平行四邊形;

 。3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類(lèi):與四邊形的對角有關(guān)

 。4)兩組對角分別相等的四邊形是平行四邊形;

  第三類(lèi):與四邊形的對角線(xiàn)有關(guān)

 。5)對角線(xiàn)互相平分的四邊形是平行四邊形

  常見(jiàn)考法

 。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);

 。2)求平行四邊形某邊的取值范圍;

 。3)考查一些綜合計算問(wèn)題;

 。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;

 。5)利用判定定理證明四邊形是平行四邊形。

  誤區提醒

 。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;

 。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

  初中數學(xué)知識點(diǎn)總結 2

  1、定理1:關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  2、定理2:關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  3、逆定理:如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  4、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等

  5、等腰梯形的兩條對角線(xiàn)相等

  6、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯:形是等腰梯形

  7、對角線(xiàn)相等的梯形是等腰梯形

  8、平行線(xiàn)等分線(xiàn)段定理:如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  9、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

  10、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

  11、三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

  12、梯形中位線(xiàn)定理:梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半:L=(a+b)÷2:S=L×h

  13、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc:如果:ad=bc:,那么a:b=c:d

  14、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  15、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  16、平行線(xiàn)分線(xiàn)段成比例定理:三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例

  17、推論:平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  18、定理:如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  19、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),:所截得的三角形的三邊與原三角形三邊對應成比例

  20、定理:平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  21、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)

  22、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  23、判定定理2:兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)

  24、判定定理3:三邊對應成比例,兩三角形相似(SSS)

  25、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  26、性質(zhì)定理1:相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  27、性質(zhì)定理2:相似三角形周長(cháng)的比等于相似比

  28、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

  29、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  30、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  31、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  32、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  33、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  34、同圓或等圓的半徑相等

  35、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  36、和已知線(xiàn)段兩個(gè)端點(diǎn)的'距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)

  37、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  38、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  39、定理:不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  40、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  41、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  42、推論2:圓的兩條平行弦所夾的弧相等

  43、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  44、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  45、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  46、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  47、推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  48、推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  49、推論3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  50、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  51、①直線(xiàn)L和⊙O相交:d

 、谥本(xiàn)L和⊙O相切:d=r

 、壑本(xiàn)L和⊙O相離:d>r

  52、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  53、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  54、推論1:經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  55、推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  56、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  57、圓的外切四邊形的兩組對邊的和相等

  58、弦切角定理:弦切角等于它所夾的弧對的圓周角

  59、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  60、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  61、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  62、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  63、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條:割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  64、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  65、①兩圓外離:d>R+r:②兩圓外切:d=R+r③兩圓相交:R-rr)

 、軆蓤A內切:d=R-r(R>r):⑤兩圓內含:dr)

  66、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  67、定理:把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  68、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  69、正n邊形的每個(gè)內角都等于(n-2)×180°/n

  70、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  71、正n邊形的面積Sn=pnrn/2:p表示正n邊形的周長(cháng)

  72、正三角形面積√3a/4:a表示邊長(cháng)

  73、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  74、弧長(cháng)計算公式:L=n兀R/180

  75、扇形面積公式:S扇形=n兀R^2/360=LR/2

  76、內公切線(xiàn)長(cháng)=:d-(R-r):外公切線(xiàn)長(cháng)=:d-(R+r):本回答被提問(wèn)者采納

  初中數學(xué)知識點(diǎn)總結 3

  一次函數:一次函數圖像與性質(zhì)是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。

  主要考察內容:

 、贂(huì )畫(huà)一次函數的圖像,并掌握其性質(zhì)。

 、跁(huì )根據已知條件,利用待定系數法確定一次函數的解析式。

 、勰苡靡淮魏瘮到鉀Q實(shí)際問(wèn)題。

 、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關(guān)系。

  突破方法:

 、僬_理解掌握一次函數的概念,圖像和性質(zhì)。

 、谶\用數學(xué)結合的思想解與一次函數圖像有關(guān)的問(wèn)題。

 、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。

 、茏鲆恍┚C合題的訓練,提高分析問(wèn)題的能力。

  函數性質(zhì):

  1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。

  2.當x=0時(shí),b為函數在y軸上的`點(diǎn),坐標為(0,b)。

  3當b=0時(shí)(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>

  4.在兩個(gè)一次函數表達式中:

  當兩一次函數表達式中的k相同,b也相同時(shí),兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時(shí),兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時(shí),兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時(shí),兩一次函數圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱(chēng)y是x的一次函數圖像性質(zhì)

  1、作法與圖形:通過(guò)如下3個(gè)步驟:

 。1)列表.

 。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據“兩點(diǎn)確定一條直線(xiàn)”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線(xiàn)即可。

  正比例函數y=kx(k≠0)的圖象是過(guò)坐標原點(diǎn)的一條直線(xiàn),一般。0,0)和(1,k)兩點(diǎn)。(3)連線(xiàn),可以作出一次函數的圖象一條直線(xiàn)。因此,作一次函數的圖象只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

  2、性質(zhì):

 。1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。

 。2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過(guò)原點(diǎn)。

  3、函數不是數,它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。

  4、k,b與函數圖像所在象限:

  y=kx時(shí)(即b等于0,y與x成正比例):

  當k>0時(shí),直線(xiàn)必通過(guò)第一、三象限,y隨x的增大而增大;當k0,b>0,這時(shí)此函數的圖象經(jīng)過(guò)第一、二、三象限;當k>0,b

  初中數學(xué)知識點(diǎn)總結 4

  第一部分 概率論基本知識

  隨機事件與樣本空間 ?事件的關(guān)系與運算(和,積,差,相等,對立,互斥和逆事件)

  事件的關(guān)系圖

  概率的概念和基本性質(zhì)

  古典型概率 幾何型概率

  條件概率 乘法公式 ?全概率公式和貝葉斯公式 事件的劃分

  事件的獨立性 ?相互獨立和兩兩獨立 ?獨立重復試驗

  第二部分 一維隨機變量

  離散型隨機變量的定義和概率分布 ?三種重要的離散型隨機變量

  隨機變量的分布函數的概念及其性質(zhì)

  連續型隨機變量的定義 ?概率密度函數的概念 均勻分布,指數分布和正態(tài)分布的概念及密度函數

  隨機變量函數的分布

  第三部分 二維隨機變量

  二維隨機變量及其分布函數的概念 ?二維離散型、連續型隨機變量的概率分布

  邊緣分布函數 分布率 ?概率密度 二維正態(tài)分布

  二維離散型條件分布率,二維連續型條件概率密度 ?二維均勻分布

  相互獨立的隨機變量

  兩個(gè)隨機變量的函數的分布 和、積、商、最大、最小值分布

  第四部分 隨機變量數字特征

  隨機變量的數學(xué)期望的概念和性質(zhì) ?常見(jiàn)分布函數的數學(xué)期望的計算方法及結果 ?隨機變量函數的`數學(xué)期望及求解方法

  隨機變量方差的概念和性質(zhì) ?常見(jiàn)分布函數的方差 ?切比雪夫不等式

  相關(guān)系數 ?協(xié)方差的概念和性質(zhì) ?隨機變量的不相關(guān)性 ?不相關(guān)性與獨立性的關(guān)系

  第五部分 大數定律和中心極限定理

  切比雪夫大數定律 ?辛欽大數定律 ? 伯努利大數定律

  獨立同分布中心極限定理(列維—林德伯格中心極限定理)

  棣莫弗—拉普拉斯中心極限定理

  第六部分 統計基礎

  統計量 ?樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態(tài)總體的常用抽樣分布

  第七部分 估參數估計

  點(diǎn)估計的概念 估計量與估計值 矩估計法 ?矩估計量和估計值 最大似然估計法 ?似然函數 ?對數似然方程 最大似然估計量和估計值

  估計量的評選標準(無(wú)偏性、有效性和相合性)及其相關(guān)概念(只數一要求)

  初中數學(xué)知識點(diǎn)總結 5

  誘導公式的本質(zhì)

  所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的`三角函數值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  初中數學(xué)知識點(diǎn)總結 6

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

 、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的.軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  12、①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

 、壑本(xiàn)L和⊙O相離d>r

  13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20、

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內切d=R-r(R>r)

 、輧蓤A內含dr)

  初中數學(xué)知識點(diǎn)總結 7

  一、特殊的平行四邊形:

  1.矩形:

 。1)定義:有一個(gè)角是直角的平行四邊形。

 。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線(xiàn)平分且相等。

 。3)判定定理:

 、儆幸粋(gè)角是直角的平行四邊形叫做矩形。

 、趯蔷(xiàn)相等的平行四邊形是矩形。

 、塾腥齻(gè)角是直角的四邊形是矩形。

  直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。

  2.菱形:

 。1)定義:鄰邊相等的平行四邊形。

 。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。

 。3)判定定理:

 、僖唤M鄰邊相等的'平行四邊形是菱形。

 、趯蔷(xiàn)互相垂直的平行四邊形是菱形。

 、鬯臈l邊相等的四邊形是菱形。

 。4)面積:

  3.正方形:

 。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

 。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對角線(xiàn)互相垂直平分。正方形既是矩形,又是菱形。

 。3)正方形判定定理:

 、賹蔷(xiàn)互相垂直平分且相等的四邊形是正方形;

 、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;

 、蹖蔷(xiàn)互相垂直的矩形是正方形;

 、茑忂呄嗟鹊木匦问钦叫

 、萦幸粋(gè)角是直角的菱形是正方形;

 、迣蔷(xiàn)相等的菱形是正方形。

  二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

  1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎上擴充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對角線(xiàn)方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線(xiàn)方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對角線(xiàn)方面都具有比平行四邊形更多的特性。

  2.矩形、菱形的判定可以根據出發(fā)點(diǎn)不同而分成兩類(lèi):一類(lèi)是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類(lèi)是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。

  三、判定一個(gè)四邊形是特殊四邊形的步驟:

  常見(jiàn)考法

 。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計算;

 。2)靈活運用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;

 。3)一些折疊問(wèn)題;

 。4)矩形與直角三角形和等腰三角形有著(zhù)密切聯(lián)系、正方形與等腰直角三角形也有著(zhù)密切聯(lián)系。所以,以此為背景可以設置許多考題。

  誤區提醒

 。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現混淆;

 。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現混淆;

 。3)不能正確的理解和運用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

 。4)再利用對角線(xiàn)長(cháng)度求菱形的面積時(shí),忘記乘;

 。5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。

  初中數學(xué)知識點(diǎn)總結 8

  1有理數加法法則

  1、同號兩數相加,取相同的符號,并把絕對值相加;

  2、異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  3、一個(gè)數與0相加,仍得這個(gè)數。

  2有理數加法的運算律

  1、加法的交換律:a+b=b+a;

  2、加法的結合律:(a+b)+c=a+(b+c)

  3有理數減法法則

  減去一個(gè)數,等于加上這個(gè)數的相反數;即a—b=a+(—b)

  4有理數乘法法則

  1、兩數相乘,同號為正,異號為負,并把絕對值相乘;

  2、任何數同零相乘都得零;

  3、幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的個(gè)數決定。

  5有理數乘法的運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6單項式

  只含有數字與字母的積的代數式叫做單項式。

  注意:?jiǎn)雾検绞怯上禂、字母、字母的指數構成的?/p>

  7多項式

  1、幾個(gè)單項式的和叫做多項式。其中每個(gè)單項式叫做這個(gè)多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個(gè)多項式的次數。

  2、同類(lèi)項所有字母相同,并且相同字母的'指數也分別相同的項叫做同類(lèi)項。幾個(gè)常數項也是同類(lèi)項。

  8中心對稱(chēng)

  1、定義:把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱(chēng)或中心對稱(chēng),這個(gè)點(diǎn)叫做對稱(chēng)中心。這兩個(gè)圖形中的對應點(diǎn)叫做關(guān)于中心的對稱(chēng)點(diǎn)。

  2、心對稱(chēng)的兩條基本性質(zhì):

 。1)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)所連線(xiàn)段都經(jīng)過(guò)對稱(chēng)中心,而且被對稱(chēng)中心所平分。

 。2)關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等圖形。

  3、中心對稱(chēng)圖形

  把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180°,如果旋轉后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)點(diǎn)就是它的對稱(chēng)中心。

  初中數學(xué)知識點(diǎn)總結 9

  三角形兩邊:

  定理三角形兩邊的和大于第三邊。

  推論三角形兩邊的差小于第三邊。

  三角形中位線(xiàn)定理:

  三角形的中位線(xiàn)平行于第三邊,并且等于它的一半。

  三角形的重心:

  三角形的重心到頂點(diǎn)的距離是它到對邊中點(diǎn)距離的2倍。

  在三角形中,連接一個(gè)頂點(diǎn)和它對邊中點(diǎn)的'線(xiàn)段叫做三角形的中線(xiàn),三角形的三條中線(xiàn)交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。

  與三角形有關(guān)的角:

  1、三角形的內角和定理:三角形的內角和為180°,與三角形的形狀無(wú)關(guān)。

  2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。

  3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內角;三角形三個(gè)外角和為360°。

  全等三角形的性質(zhì)和判定:

  全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉、對折也會(huì )構成全等三角形。

 。ㄟ呥呥叄,即三邊對應相等的兩個(gè)三角形全等。

 。ㄟ吔沁叄,即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個(gè)三角形全等。

 。ń沁吔牵,即三角形的其中兩個(gè)角對應相等,且兩個(gè)角夾的的邊也對應相等的兩個(gè)三角形全等。

 。ń墙沁叄,即三角形的其中兩個(gè)角對應相等,且對應相等的角所對應的邊也對應相等的兩個(gè)三角形全等。

 。ㄐ边、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等。

  等邊三角形的判定:

  1、三邊相等的三角形是等邊三角形(定義)。

  2、三個(gè)內角都相等的三角形是等邊三角形。

  3、有一個(gè)角是60度的等腰三角形是等邊三角形。

  4、有兩個(gè)角等于60度的三角形是等邊三角形。

  初中數學(xué)知識點(diǎn)總結 10

  第一章數的世界

  1.認識數

  從日常生活中抽象出數的過(guò)程,理解數可以用來(lái)表示日常生活中遇到的各種情況。

  2.數的表示法

  不同地區、不同國家使用的數表示法有所不同。

  3.數的運算

  數的四則運算,其中混合運算的運算順序,帶有括號的運算順序。

  4.數的比較

  數的大小比較,有理數的大小比較。

  5.數的性質(zhì)

  正數與負數、相反數、絕對值等概念,有理數的加減乘除運算。

  6.方程

  方程的概念、等式的基本性質(zhì)、解方程的方法和步驟。

  第二章圖形世界

  1.點(diǎn)、線(xiàn)、面、體

  點(diǎn)、線(xiàn)、面、體的概念和性質(zhì),點(diǎn)、線(xiàn)、面、體之間的關(guān)系。

  2.平面圖形

  平面圖形的概念、分類(lèi)和性質(zhì),常見(jiàn)平面圖形的名稱(chēng)、特點(diǎn)、性質(zhì)和應用。

  3.立體圖形

  立體圖形的概念、分類(lèi)和性質(zhì),常見(jiàn)立體圖形的名稱(chēng)、特點(diǎn)、性質(zhì)和應用。

  4.圖形變化

  圖形的平移、旋轉、對稱(chēng)等變化,變化前后的圖形與對應線(xiàn)段之間的關(guān)系。

  第三章代數知識

  1.代數式

  代數式的概念、基本形式和求值方法,代數式的化簡(jiǎn)和求值方法。

  2.一元一次方程

  一元一次方程的概念、解法和應用,一元一次方程的解。

  3.一元二次方程

  一元二次方程的概念、解法和應用,一元二次方程的解。

  4.二元一次方程組

  二元一次方程組的概念、解法和應用,二元一次方程組的解。

  5.一元一次不等式

  一元一次不等式的概念、解法和應用,一元一次不等式的解。

  6.一元二次不等式

  一元二次不等式的概念、解法和應用,一元二次不等式的解。

  7.分式

  分式的概念、基本性質(zhì)和運算,分式的`約分和通分,分式的解法。

  8.反比例函數

  反比例函數的定義、圖像和性質(zhì),反比例函數的應用。

  9.勾股定理

  勾股定理的概念、證明和應用,勾股定理在日常生活中的應用。

  第四章幾何知識

  1.平行線(xiàn)

  平行線(xiàn)的概念、性質(zhì)和判定方法,平行線(xiàn)在日常生活中的應用。

  2.三角形

  三角形的概念、分類(lèi)和性質(zhì),三角形的內角和外角,三角形的三邊關(guān)系,三角形的應用。

  3.多邊形

  多邊形的概念、分類(lèi)和性質(zhì),多邊形的內角和外角,多邊形的對角線(xiàn)。

  初中數學(xué)知識點(diǎn)總結 11

 。ㄒ唬平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數學(xué)知識點(diǎn):平面直角坐標系的構成

  對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。

  平面直角坐標系的構成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。

  點(diǎn)的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。

  對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的`對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。

  一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。

  希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。

  初中數學(xué)知識點(diǎn):因式分解的一般步驟

  關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。

 。ǘ因式分解

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。

  因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。

  因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。

  公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數項注意查項數

 、垭p重括號化成單括號

 、芙Y果按數單字母單項式多項式順序排列

 、菹嗤蚴綄(xiě)成冪的形式

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻韧(lèi)項合并。

  初中數學(xué)知識點(diǎn)總結 12

  1 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  2 定理1 關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  3 定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  4定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  5逆定理 如果兩個(gè)圖形的.對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  6勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  7勾股定理的逆定理 如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  8定理 四邊形的內角和等于360

  9四邊形的外角和等于360

  10多邊形內角和定理 n邊形的內角的和等于(n-2)180

  11推論 任意多邊的外角和等于360

  12平行四邊形性質(zhì)定理1 平行四邊形的對角相等

  13平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

  14推論 夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  15平行四邊形性質(zhì)定理3 平行四邊形的對角線(xiàn)互相平分

  16平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  17平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

  18平行四邊形判定定理3 對角線(xiàn)互相平分的四邊形是平行四邊形

  19平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  20矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

  初中數學(xué)知識點(diǎn)總結 13

  一、數與代數

  1.有理數

  有理數:

 、僬麛怠麛/0/負整數

 、诜謹怠謹/負分數

  數軸:

 、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。

 、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。

 、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  2.實(shí)數

  無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數

  平方根:如果一個(gè)數的平方等于a,那么這個(gè)數就叫做a的平方根(或二次方跟);一個(gè)數有兩個(gè)平方根,他們互為相反數;零的平方根是零;負數沒(méi)有平方根。

  算術(shù)平方根:正數的正的平方根和零的平方根統稱(chēng)為主根,用符號“√a”表示,a為“被開(kāi)方數”。

  立方根:如果一個(gè)數的立方等于a,那么這個(gè)數就叫做a的立方根(或a的三次方根);一個(gè)正數的立方根是正數、零的立方根是零、負數的立方根是負數;

  二、方程

  1.代數式:?jiǎn)为氁粋(gè)數字或一個(gè)字母也是代數式。

  2.一元一次方程:含有一個(gè)未知數,并且未知數的次數是1,并且含有一個(gè)未知數,并且未知數的次數是1的所有整式方程是一元一次方程。

  3.一元二次方程:含有一個(gè)未知數,并且未知數的次數是2的所有整式方程是一元二次方程。

  4.二元一次方程:含有兩個(gè)未知數,并且含有一個(gè)未知數的次數是1的所有整式方程叫二元一次方程。

  5.二元二次方程:含有兩個(gè)未知數,并且含有一個(gè)未知數的次數是2的所有整式方程叫二元二次方程。

  三、三角形

  1.幾何圖形:學(xué)過(guò)的立體圖形有圓柱、圓錐和球以及長(cháng)方體、正方體、棱柱、棱錐、棱臺。

  2.圖形的三視圖:俯視圖、主視圖、左視圖。

  3.三角形的穩定性。

  4.三角形的分類(lèi):銳角三角形、直角三角形、鈍角三角形。

  5.三角形的內角和定理:三角形三個(gè)內角的和等于180度。

  6.解直角三角形:解直角三角形需要運用勾股定理及銳角三角函數的`定義。銳角三角函數的定義:在直角三角形中,一銳角的正切等于銳角A對邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對邊的比值;一銳角的正弦等于銳角A的對邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。

  7.全等三角形:全等三角形的對應邊相等;全等三角形的對應角相等。

  8.等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等;(簡(jiǎn)稱(chēng):等邊對等角)以及等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高相互重合。(簡(jiǎn)稱(chēng):三線(xiàn)合一)

  9.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等。(簡(jiǎn)稱(chēng):等角對等邊)

  10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個(gè)角都相等的三角形是等邊三角形。

  11.相似的三角形:相似三角形的對應邊成比例;對應角相等。

  12.反證法:在證明一個(gè)命題的論證中,假設命題的結論不成立,從這個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出與定義、公理或已經(jīng)證明過(guò)的命題或已經(jīng)掌握的事實(shí)相矛盾,從而使這個(gè)假設成為一個(gè)不成立的命題,這種推證方法叫做反證法。證明兩條線(xiàn)段相等時(shí)常常用反證法。

  四、四邊形

  1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對角線(xiàn)的交點(diǎn)。

  2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對角線(xiàn)的交點(diǎn)。

  3.梯形問(wèn)題

【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:

初中數學(xué)的知識點(diǎn)總結09-19

初中數學(xué)的知識點(diǎn)總結03-11

初中數學(xué)的知識點(diǎn)總結大全12-09

初中數學(xué)圓的知識點(diǎn)總結06-07

初中數學(xué)函數知識點(diǎn)總結04-12

初中數學(xué)必備知識點(diǎn)總結03-11

初中數學(xué)知識點(diǎn)總結03-04

數學(xué)初中知識點(diǎn)總結03-27

初中數學(xué)幾何知識點(diǎn)總結03-16

初中數學(xué)圓知識點(diǎn)總結10-17