[集合]初中數學(xué)知識點(diǎn)總結
總結是對某一特定時(shí)間段內的學(xué)習和工作生活等表現情況加以回顧和分析的一種書(shū)面材料,它是增長(cháng)才干的一種好辦法,讓我們好好寫(xiě)一份總結吧?偨Y怎么寫(xiě)才不會(huì )千篇一律呢?下面是小編收集整理的初中數學(xué)知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數學(xué)知識點(diǎn)總結1
平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系:
在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解定義:
把一個(gè)多項式化成幾個(gè)整式的積的'形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:
一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
初中數學(xué)知識點(diǎn)總結2
在初中數學(xué)課堂教學(xué)中,小結一般作為總結本課,開(kāi)啟下一課的鑰匙。但是在具體執行過(guò)程中,受到時(shí)間、學(xué)生心態(tài)、教師課堂設計水平等因素的限制,初中數學(xué)課堂小結在運用的過(guò)程中呈現出多種問(wèn)題。究其原因是多方面的,而其最主要的原因則來(lái)源于教師對學(xué)生心理的把握力度不夠。心理學(xué)專(zhuān)家在當代少年兒童的大腦結構分析基礎上所做出的研究表明,在初中階段的學(xué)生對課程的關(guān)注度主要集中在前15分鐘,個(gè)別注意力比較好的學(xué)生能堅持到15~25分鐘,隨著(zhù)時(shí)間的推移,從25分鐘到45分鐘之間學(xué)生的記憶力和注意力則出現了逐漸下滑的趨勢。由此可見(jiàn),教師在做初中數學(xué)課程設計時(shí),僅僅按照傳統習慣將課堂小結作為課末總結的方式并不科學(xué),對學(xué)生的課堂學(xué)習和課下探索延伸起不到推動(dòng)作用。
由此,在新的知識環(huán)節講解和學(xué)習的過(guò)程中,對課堂小結的設計,教師應該通過(guò)巧妙的規劃,實(shí)現溫故知新,而這又是對本堂課程的總結和反思的過(guò)程,具有極強的邏輯性和漸進(jìn)性,環(huán)環(huán)相扣,同時(shí)要為學(xué)生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數學(xué)“探索多邊形的內角和”的課堂學(xué)習為例,對課堂小結的運用從以下兩個(gè)方面進(jìn)行闡述。
一、撥迷梳“理”,溫故知新
七年級“探索多邊形的內角和”一課的教學(xué)重點(diǎn)是讓學(xué)生了解什么是多邊形、什么是內角、如何求內角和、如何在現實(shí)生活中利用此種計算方法。新課標要求,學(xué)生作為教學(xué)主體,對課程重點(diǎn)內容的了解和領(lǐng)悟主要是以他們自身的動(dòng)手操作為主,這也是教師在教案設計時(shí)的主要切入點(diǎn)之一。在明確本堂課的教學(xué)重點(diǎn)之后,教師需要對以往學(xué)習過(guò)的知識點(diǎn)進(jìn)行梳理,并找出與本堂課有關(guān)聯(lián)性的知識點(diǎn),在課程初始時(shí)作為引導,通過(guò)對以往知識點(diǎn)的回顧,如三角形、相交線(xiàn)等已學(xué)知識點(diǎn)引出本堂課的重點(diǎn)。而后面即將學(xué)習的`課程,如“多姿多彩幾何圖形”等的相應測試,也可以作為學(xué)生課堂及課后的延伸知識點(diǎn),在教師的課程講解過(guò)程中予以貫穿。當然,在課程設計初期,教師要尤為注意的是,應根據本堂課知識點(diǎn)的重點(diǎn)排序,由主到輔、由簡(jiǎn)入深地安排好具有節奏感的講解內容及小結,而作為延伸思考的知識點(diǎn)在每個(gè)小結部分可以按照其相關(guān)性和重要性進(jìn)行穿插安排。
二、動(dòng)手操作,注重反思
“探索多邊形的內角和”中,多邊形的概念是本課各個(gè)難點(diǎn)展開(kāi)的基礎,按照多邊形的概念,教師可以讓學(xué)生用線(xiàn)、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線(xiàn)美。引導學(xué)生嘗試以拉伸和縮小的方式構架出凹多邊形和凸多變形后,教師可以讓學(xué)生按照體驗來(lái)描述二者的區別和相同點(diǎn),并以此作為小結。當學(xué)生做完歸納后,根據本課“多邊形的內角和主要以凸多邊形為主”的教學(xué)目標要求,教師可提問(wèn):“同學(xué)們目前已經(jīng)了解了二者的區別,本堂課要講解的‘多邊形內角和’主要以凸多邊形為基礎,但是為什么我們不以凹多邊形為基礎呢?請同學(xué)們仔細想想原因!苯處煹倪@種講解模式既可以為下面對“內角和”的重點(diǎn)講解作鋪墊,又可以讓學(xué)生深入思考之前對凹凸多邊形的描述是否恰當,是否符合多邊形的數學(xué)性規律。
在此種引導方法下,學(xué)生會(huì )按照下一個(gè)知識點(diǎn)的內容來(lái)反思之前的小結是否具有全面性。在反復的思考和對比過(guò)程中,學(xué)生的邏輯思維可以得到充分的訓練。這對培養學(xué)生的數學(xué)思維,以及對知識點(diǎn)的重復性推敲和反思能力的提升具有促進(jìn)作用。一旦學(xué)生在思考和探討的過(guò)程中,摸索到數學(xué)本身的規律,并從復雜多樣的數學(xué)知識點(diǎn)中找到其原本的架構,自然會(huì )在頭腦中建立起一個(gè)符合自身記憶和領(lǐng)悟需要的數學(xué)知識體系。
三、大道從簡(jiǎn),循環(huán)漸進(jìn)
大道從簡(jiǎn),按照初中數學(xué)的知識點(diǎn)架構來(lái)看,每堂課的每個(gè)知識點(diǎn)都可以在被重點(diǎn)提煉之后作為節點(diǎn)來(lái)布置課堂小結。以數學(xué)的邏輯思維傳承性為基礎,課堂上的下一個(gè)知識點(diǎn)就可以作為反思和推敲上一個(gè)小結的試金石,如此循環(huán)往復后,課末的最終知識點(diǎn)總結則對本課所有知識點(diǎn)小結進(jìn)行有效的補充和完善,進(jìn)而延伸出下堂課以及與本堂課重點(diǎn)內容相關(guān)的其他數學(xué)知識點(diǎn)的探索和思考。
當然,這種教學(xué)方法也同樣可以運用到其他學(xué)科的教學(xué)中。借助教師的漸進(jìn)式誘導,學(xué)生會(huì )自主加入到課堂探索中,通過(guò)由簡(jiǎn)到難、由淺入深的逐層遞進(jìn)式反思和討論提升在課堂中的興趣度和專(zhuān)注度。
初中數學(xué)知識點(diǎn)總結3
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等——補角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理
xxx兩邊的和大于第三邊
16、推論
xxx兩邊的差小于第三邊
17、xxx內角和定理:
xxx三個(gè)內角的和等于180°
18、推論1
直角xxx的兩個(gè)銳角互余
19、推論2
xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3
xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個(gè)xxx全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的
兩個(gè)xxx全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個(gè)xxx全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個(gè)直角xxx全等
27、定理1
在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰xxx頂角的平分線(xiàn)平分底邊并且垂直于底邊
31、推論2
等腰xxx的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合,即三線(xiàn)合一;
32、推論3
等邊xxx的各角都相等,并且每一個(gè)角都等于60°
33、等腰xxx的判定定理
如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
34、等腰xxx的性質(zhì)定理
等腰xxx的兩個(gè)底角相等
(即等邊對等角)
35、推論1
三個(gè)角都相等的xxx是等邊xxx
36、推論
有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線(xiàn)等于斜邊上的一半
39、定理
線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3
兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理
如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理
直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理
四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理
n邊形的內角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線(xiàn)互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對角線(xiàn)相等
62、矩形判定定理1
有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2
對角線(xiàn)相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2
正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71、定理1
關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理
如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理
如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79、推論1
經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的`直線(xiàn),必平分另一腰
80、推論2
經(jīng)過(guò)xxx一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
81、xxx中位線(xiàn)定理
xxx的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理
梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理
三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
87、推論
平行于xxx一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理
如果一條直線(xiàn)截xxx的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于xxx的第三邊
89、平行于xxx的一邊,并且和其他兩邊相交的直線(xiàn),所截得的xxx的三邊與原xxx三邊對應成比例
90、定理
平行于xxx一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的xxx與原xxx相似
91、相似xxx判定定理1
兩角對應相等,兩xxx相似(ASA)
92、直角xxx被斜邊上的高分成的兩個(gè)直角xxx和原xxx相似
93、判定定理2
兩邊對應成比例且?jiàn)A角相等,兩xxx相似(SAS)
94、判定定理3
三邊對應成比例,兩xxx相似(SSS)
95、定理
如果一個(gè)直角xxx的斜邊和一條直角邊與另一個(gè)直角xxx的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角xxx相似(HL)
96、性質(zhì)定理1
相似xxx對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97、性質(zhì)定理2
相似xxx周長(cháng)的比等于相似比
98、性質(zhì)定理3
相似xxx面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109、定理
不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果xxx一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)xxx是直角xxx
120、定理
圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121、①直線(xiàn)L和⊙O相交
0
、谥本(xiàn)L和⊙O相切
d=r
、壑本(xiàn)L和⊙O相離
d>r
122、切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123、切線(xiàn)的性質(zhì)定理
圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理
從圓外一點(diǎn)引圓的兩條切線(xiàn)相交與一點(diǎn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理
從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項?
133、推論
從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條
割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離
d>R+r
、趦蓤A外切
d=R+r
、蹆蓤A相交
R-r<d<R+r(R>r)
、軆蓤A內切
d=R-r(R>r)
、輧蓤A內含
d<R-r(R>r)
136、定理
相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長(cháng)
142、正xxx面積√3a^2/4
a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(cháng)計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線(xiàn)長(cháng)=d-(R-r)
外公切線(xiàn)長(cháng)=d-(R+r)
初中數學(xué)知識點(diǎn)總結4
第一章有理數
一、正數和負數
、闭龜岛拓摂档母拍
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時(shí),—a是負數;當a表示負數時(shí),—a是正數;當a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說(shuō)法是錯誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)
、谡龜涤袝r(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長(cháng)與降低等等是相對相反量,它們計數:比原先多了的數,增加增長(cháng)了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。 3.0表示的意義
、0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;
、0是正數和負數的分界線(xiàn),0既不是正數,也不是負數。
二、有理數
1、有理數的概念
、耪麛、0、負整數統稱(chēng)為整數(0和正整數統稱(chēng)為自然數)
、普謹岛拓摲謹到y稱(chēng)為分數
、钦麛,0,負整數,正分數,負分數都可以寫(xiě)成分數的形式,這樣的數稱(chēng)為有理數。
理解:只有能化成分數的數才是有理數。①π是無(wú)限不循環(huán)小數,不能寫(xiě)成分數形式,不是有理數。②有限小數和無(wú)限循環(huán)小數都可化成分數,都是有理數。
注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8?也是偶數,—1,—3,—5?也是奇數。
2、(1)凡能寫(xiě)成q(p,q為整數且p?0)形式的數,都是有理數。正整數、0、負整數統稱(chēng)整數;正分數、負p
分數統稱(chēng)分數;整數和分數統稱(chēng)有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;?不是有理數;
學(xué)霸分享的數學(xué)復習技巧
1、把答案蓋住看例題
例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。
經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì )更大。
2、研究每題都考什么
數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。
學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結經(jīng)驗
每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。
數學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達定理
一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。
5、待定系數法
在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的'結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。
6、構造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。
數學(xué)經(jīng)常遇到的問(wèn)題解答
1、要提高數學(xué)成績(jì)首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數學(xué)成績(jì),首先就應該從基礎知識學(xué)起。不少同學(xué)覺(jué)得基礎知識過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì )了。這種“自我感覺(jué)良好”其實(shí)是一種錯覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎不牢的表現,因此要提高數學(xué)成績(jì)先要把基礎夯實(shí)。
2、基礎不好怎么學(xué)好數學(xué)?
對于基礎差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個(gè)好處,第一,強化基礎;第二,提高得分能力。
3、是否要采用題海戰術(shù)?
方法君曾不止一次提到了“題海戰術(shù)”,題海戰術(shù)究竟可不可取呢?“題海戰術(shù)”其實(shí)也是一種學(xué)習方法,但很多學(xué)生只知道做題,不懂得總結,體現不出任何的學(xué)習效果。因此在做題后要總結至關(guān)重要,只有認真總結才能不斷積累做題經(jīng)驗,這樣才能取得理想成績(jì)。
4、做題總是粗心怎么辦?
很多學(xué)生成績(jì)不好,會(huì )說(shuō)自己是因為粗心導致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒(méi)有清晰的解題思路、計算能力不強。因此在平時(shí)的學(xué)習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習弱點(diǎn),所以,要告訴自己,高中數學(xué)沒(méi)有“粗心”只有“不用心”。
為什么要學(xué)習數學(xué)
作為一門(mén)普及度極廣的學(xué)科,數學(xué)在人類(lèi)文明的發(fā)展史上一直占據著(zhù)重要的地位。雖然很多人可能會(huì )對數學(xué)產(chǎn)生排斥,認為它枯燥無(wú)味,但事實(shí)上,數學(xué)是所有學(xué)科的基石之一,對我們日常生活以及未來(lái)的職業(yè)發(fā)展有著(zhù)重大影響。下面我將詳細闡述學(xué)習數學(xué)的重要性。
首先,數學(xué)可以幫助我們提高邏輯思維能力。數學(xué)的學(xué)科性質(zhì)使我們在學(xué)習的過(guò)程中時(shí)時(shí)刻刻面臨著(zhù)思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機會(huì )。通過(guò)長(cháng)期的學(xué)習和練習,我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問(wèn)題時(shí)更能得心應手。
其次,數學(xué)在現代科技中起著(zhù)至關(guān)重要的作用。在計算機科學(xué)、物理學(xué)、經(jīng)濟學(xué)、工程學(xué)等領(lǐng)域,數學(xué)可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實(shí)際應用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習技術(shù)所涉及的數學(xué)概念包括線(xiàn)性代數、微積分和概率論等,如果沒(méi)有深厚的數學(xué)基礎,很難理解和應用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機械、電子、化工等產(chǎn)品的設計和制造過(guò)程,也需要運用到數學(xué)知識,因此學(xué)習數學(xué)可以使我們更好地參與到現代科技的發(fā)展中。
除此之外,數學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數學(xué)語(yǔ)言進(jìn)行表達和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數學(xué)語(yǔ)言來(lái)描述自然世界的規律和現象。在社會(huì )科學(xué)和商科領(lǐng)域,經(jīng)濟學(xué)和金融學(xué)運用的數學(xué)概念,如微積分、線(xiàn)性代數和統計學(xué)等,使得我們能夠更好地理解經(jīng)濟和財務(wù)數據,并進(jìn)行決策。因此,學(xué)習數學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識。
最后,學(xué)習數學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機遇和發(fā)展空間。在許多領(lǐng)域,數學(xué)專(zhuān)業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會(huì ),如金融界、數據科學(xué)、研究機構、教育等。數學(xué)專(zhuān)業(yè)的人才,不只會(huì )提供理論支持,同時(shí)也能夠解決現實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。
初中數學(xué)知識點(diǎn)總結5
一、特殊的平行四邊形:
1.矩形:
。1)定義:有一個(gè)角是直角的平行四邊形。
。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線(xiàn)平分且相等。
。3)判定定理:
、儆幸粋(gè)角是直角的平行四邊形叫做矩形。
、趯蔷(xiàn)相等的平行四邊形是矩形。
、塾腥齻(gè)角是直角的四邊形是矩形。
直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
。1)定義:鄰邊相等的'平行四邊形。
。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。
。3)判定定理:
、僖唤M鄰邊相等的平行四邊形是菱形。
、趯蔷(xiàn)互相垂直的平行四邊形是菱形。
、鬯臈l邊相等的四邊形是菱形。
。4)面積:
3.正方形:
。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對角線(xiàn)互相垂直平分。正方形既是矩形,又是菱形。
。3)正方形判定定理:
、賹蔷(xiàn)互相垂直平分且相等的四邊形是正方形;
、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;
、蹖蔷(xiàn)互相垂直的矩形是正方形;
、茑忂呄嗟鹊木匦问钦叫
、萦幸粋(gè)角是直角的菱形是正方形;
、迣蔷(xiàn)相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎上擴充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對角線(xiàn)方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線(xiàn)方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對角線(xiàn)方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據出發(fā)點(diǎn)不同而分成兩類(lèi):一類(lèi)是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類(lèi)是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。
三、判定一個(gè)四邊形是特殊四邊形的步驟:
常見(jiàn)考法
。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計算;
。2)靈活運用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;
。3)一些折疊問(wèn)題;
。4)矩形與直角三角形和等腰三角形有著(zhù)密切聯(lián)系、正方形與等腰直角三角形也有著(zhù)密切聯(lián)系。所以,以此為背景可以設置許多考題。
誤區提醒
。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現混淆;
。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現混淆;
。3)不能正確的理解和運用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);
。4)再利用對角線(xiàn)長(cháng)度求菱形的面積時(shí),忘記乘;
。5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。
初中數學(xué)知識點(diǎn)總結6
一、初中數學(xué)基本概念
1.方程:含有未知數的等式叫做方程。
2.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
3.方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。
4.解方程:求方程的解的過(guò)程叫做解方程。
5.恒等式:兩個(gè)含有相同的未知數,并且含未知數項的系數都是零的整式方程是一元一次方程。
二、初中數學(xué)基本公式
1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。
2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。
3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。
4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。
5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。
6.正方形面積公式:正方形面積=邊長(cháng)×邊長(cháng),用字母表示為“S=a2”。
7.一元一次方程求解公式:ax=b,其中a和b為方程的系數,x為未知數。當a≠0時(shí),有唯一解;當a=0且b≠0時(shí),無(wú)解;當a=0且b=0時(shí),有無(wú)數解。
三、初中數學(xué)基本定理
1.等式的性質(zhì):等式兩邊同時(shí)加上(或減去)同一個(gè)代數式,所得結果仍是等式;等式兩邊同時(shí)乘以(或除以)同一個(gè)不為0的數或代數式,所得結果仍是等式。
2.方程的解法:通過(guò)移項、合并同類(lèi)項、去括號、去分母等方式,將一元一次方程轉化為ax=b的形式,求解得到方程的解。
3.一元一次不等式的解法:將一元一次不等式轉化為ax>b或ax
4.二元一次方程組的解法:通過(guò)代入消元法或加減消元法,將二元一次方程組轉化為一個(gè)一元一次方程,然后求解得到方程組的解。
5.菱形的性質(zhì):菱形的四條邊相等,對角線(xiàn)互相垂直平分,并且每一組對角線(xiàn)平分一組對角。
6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個(gè)角都是直角。
7.相似三角形的判定定理:兩個(gè)三角形對應邊成比例且對應角相等,則這兩個(gè)三角形相似。
8.全等三角形的判定定理:兩個(gè)三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個(gè)三角形全等。
9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對的兩條弧,平分弦所對的圓周弧的弦垂直平分弦。
10.圓的切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);經(jīng)過(guò)圓的半徑外端且垂直于切線(xiàn)的直線(xiàn)是圓的切線(xiàn);圓的割線(xiàn)定理:一條直線(xiàn)與一個(gè)圓有兩個(gè)不同的交點(diǎn),則這條直線(xiàn)被圓截得的線(xiàn)段長(cháng)的平方等于這個(gè)圓上兩點(diǎn)所對應的弦長(cháng)的平方差。
11.相交弦定理:圓內的`兩條相交弦被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等。
12.切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等。
13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等;相等的弧所對的弦也相等;相等的弦所對的弧也相等;在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等;弧的度數等于它所對的圓心角度數;一個(gè)圓心角等于它所對的弧的度數;半圓(或直徑)所對的圓周角是直角;90°的圓周
初中數學(xué)知識點(diǎn)總結7
二元一次方程(組)
1、二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
2、二元一次方程組:含有兩個(gè)未知數的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
3、二元一次方程組的解:二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
4、二元一次方程組的解法。
。1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉,主要步驟是,將其中一個(gè)方程中的某個(gè)未知數用含有另一個(gè)未知數的代數式表示出來(lái),并代人另一個(gè)方程中,從而消去一個(gè)未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱(chēng)為代人消元法,簡(jiǎn)稱(chēng)代人法。
。2)加減消元法:通過(guò)方程兩邊分別相加(減)消去其中一個(gè)未知數,這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法。
提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。
平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:
、僭谕黄矫
、趦蓷l數軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的.橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
因式分解
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
初中數學(xué)知識點(diǎn)總結8
k0時(shí),y隨x的增大而減小,直線(xiàn)一定過(guò)二、四象限(3)若直線(xiàn)l1:yk1xb1l2:yk2xb2
當k1k2時(shí),l1//l2;當b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。
。4)當b>0時(shí)直線(xiàn)與y軸交于原點(diǎn)上方;當b學(xué)大教育
(1)是中心對稱(chēng)圖形,對中稱(chēng)心是原點(diǎn)(2)對稱(chēng)性:是軸直線(xiàn)yx和yx(2)是軸對稱(chēng)圖形,對稱(chēng)k0時(shí)兩支曲線(xiàn)分別位于一、三象限且每一象限內y隨x的增大而減。3)
k0時(shí)兩支曲線(xiàn)分別位于二、四象限且每一象限內y隨x的增大而增大(4)過(guò)圖象上任一點(diǎn)作x軸與y軸的垂線(xiàn)與坐標軸構成的矩形面積為|k|。
P(1)應用在u3.應用(2)應用在(3)其它F上SS上t其要點(diǎn)是會(huì )進(jìn)行“數結形合”來(lái)解決問(wèn)題二、二次函數
1.定義:應注意的問(wèn)題
。1)在表達式y=ax2+bx+c中(a、b、c為常數且a≠0)(2)二次項指數一定為22.圖象:拋物線(xiàn)
3.圖象的性質(zhì):分五種情況可用表格來(lái)說(shuō)明表達式(1)y=ax2頂點(diǎn)坐標對稱(chēng)軸(0,0)最大(。┲祔最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線(xiàn)x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線(xiàn)x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育
表達式h)2+k頂點(diǎn)坐標對稱(chēng)軸直線(xiàn)x=h最大(。┲祔最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育
一次函數圖象和性質(zhì)
【知識梳理】
1.正比例函數的'一般形式是y=kx(k≠0),一次函數的一般形式是y=kx+b(k≠0).2.一次函數ykxb的圖象是經(jīng)過(guò)(3.一次函數ykxb的圖象與性質(zhì)
圖像的大致位置經(jīng)過(guò)象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質(zhì)而而而而
【思想方法】數形結合
k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的一條直線(xiàn).k反比例函數圖象和性質(zhì)
【知識梳理】
1.反比例函數:一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數,k≠0)的形式,那么稱(chēng)y是x的反比例函數.2.反比例函數的圖象和性質(zhì)
k的符號k>0yoxk<0yox
圖像的大致位置經(jīng)過(guò)象限性質(zhì)
第象限在每一象限內,y隨x的增大而第象限在每一象限內,y隨x的增大而3.k的幾何含義:反比例函數y=的幾何意義,即過(guò)雙曲線(xiàn)y=
k(k≠0)中比例系數kxk(k≠0)上任意一點(diǎn)P作x4
x軸、y軸垂線(xiàn),設垂足分別為A、B,則所得矩形OAPB
函數學(xué)習方法學(xué)大教育
的面積為.
【思想方法】數形結合
二次函數圖象和性質(zhì)
【知識梳理】
1.二次函數ya(xh)2k的圖像和性質(zhì)
圖象開(kāi)口對稱(chēng)軸頂點(diǎn)坐標最值增減性
在對稱(chēng)軸左側在對稱(chēng)軸右側當x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數
【思想方法】
1.常用解題方法設k法2.常用基本圖形雙直角
【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=
14,則tanB=______;(2)若cosA=,則tanB=______.255
函數學(xué)習方法學(xué)大教育
例題2.(1)已知:cosα=
23,則銳角α的取值范圍是()A.0°
初中數學(xué)知識點(diǎn)總結9
知識點(diǎn)總結
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等;
。2)平行四邊形的鄰角互補,對角相等;
。3)平行四邊形的對角線(xiàn)互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的`五種判定方法,進(jìn)行劃分:
第一類(lèi):與四邊形的對邊有關(guān)
。1)兩組對邊分別平行的四邊形是平行四邊形;
。2)兩組對邊分別相等的四邊形是平行四邊形;
。3)一組對邊平行且相等的四邊形是平行四邊形;
第二類(lèi):與四邊形的對角有關(guān)
。4)兩組對角分別相等的四邊形是平行四邊形;
第三類(lèi):與四邊形的對角線(xiàn)有關(guān)
。5)對角線(xiàn)互相平分的四邊形是平行四邊形
常見(jiàn)考法
。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);
。2)求平行四邊形某邊的取值范圍;
。3)考查一些綜合計算問(wèn)題;
。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區提醒
。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;
。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
初中數學(xué)知識點(diǎn)總結10
定義
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形
比值與比的概念
比值是一個(gè)具體的數字如:AB/EF=2
而比不是一個(gè)具體的數字如:AB/EF=2:1判定方法
證兩個(gè)相似三角形應該把表示對應頂點(diǎn)的字母寫(xiě)在對應的位置上。如果是文字語(yǔ)言的“△ABC與△DEF相似”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)可能沒(méi)有寫(xiě)在對應的位置上,而如果是符號語(yǔ)言的“△ABC∽△DEF”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)寫(xiě)在了對應的位置上。
方法一(預備定理)
平行于三角形一邊的直線(xiàn)截其它兩邊所在的直線(xiàn),截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎。這個(gè)引理的證明方法需要平行線(xiàn)與線(xiàn)段成比例的證明)
方法二
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似。
方法三
如果兩個(gè)三角形的'兩組對應邊成比例,并且相應的夾角相等,
那么這兩個(gè)三角形相似
方法四
如果兩個(gè)三角形的三組對應邊成比例,那么這兩個(gè)三角形相似
方法五(定義)
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形
三個(gè)基本型
Z型A型反A型
方法六
兩個(gè)直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形
1、兩個(gè)全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個(gè)等腰三角形
(兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)
3、兩個(gè)等邊三角形
(兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)
圖形的學(xué)習需要大家對于知識的詳細了解和滲透,而不是一帶而過(guò)。
初中數學(xué)知識點(diǎn)總結11
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線(xiàn)繞其端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線(xiàn),那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補、互余是指兩個(gè)角的數量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規和直尺)。
五、角平分線(xiàn):從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn)。把這個(gè)角分成相等的兩部分,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
常見(jiàn)考法
(1)考查與時(shí)鐘有關(guān)的'問(wèn)題;(2)角的計算與度量。
誤區提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯。
初中數學(xué)知識點(diǎn)梳理
1.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類(lèi)項……系數化為1 ……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問(wèn)題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關(guān)系填入代數式,得到方程。
(2)畫(huà)圖分析法:多用于“行程問(wèn)題”
利用圖形分析數學(xué)問(wèn)題是數形結合思想在數學(xué)中的體現,仔細讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據,最后利用量與量之間的關(guān)系(可把未知數看做已知量),填入有關(guān)的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問(wèn)題:距離=速度·時(shí)間;
(2)工程問(wèn)題:工作量=工效·工時(shí);
(3)比率問(wèn)題:部分=全體·比率;
(4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;
(6)周長(cháng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(cháng)方形=2(a+b),S長(cháng)方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長(cháng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內容是代數學(xué)的核心,也是所有代數方程的基礎。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè )很容易激起學(xué)生對數學(xué)的樂(lè )趣,所以要注意引導學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習、探究學(xué)習的過(guò)程中獲得知識,提升能力,體會(huì )數學(xué)思想方法。
初中數學(xué)知識點(diǎn)總結12
整式的加減
2、1整式
1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數、單項式指的是數或字母的積的代數式、單獨一個(gè)數或一個(gè)字母也是單項式、因此,判斷代數式是否是單項式,關(guān)鍵要看代數式中數與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式、
2、單項式的系數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和、
4、多項式:幾個(gè)單項式的和。判斷代數式是否是多項式,關(guān)鍵要看代數式中的每一項是否是單項式、每個(gè)單項式稱(chēng)項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里是次數項,其次數是6;多項式的項是指在多項式中,每一個(gè)單項式、特別注意多項式的項包括它前面的性質(zhì)符號、
5、它們都是用字母表示數或列式表示數量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統稱(chēng)為整式。
2、2整式的加減
1、同類(lèi)項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無(wú)關(guān)。
2、同類(lèi)項必須同時(shí)滿(mǎn)足兩個(gè)條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可、同類(lèi)項與系數大小、字母的排列順序無(wú)關(guān)
3、合并同類(lèi)項:把多項式中的同類(lèi)項合并成一項?梢赃\用交換律,結合律和分配律。
4、合并同類(lèi)項法則:合并同類(lèi)項后,所得項的系數是合并前各同類(lèi)項的系數的.和,且字母部分不變;
5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。
6、整式加減的一般步驟:
一去、二找、三合
(1)如果遇到括號按去括號法則先去括號、(2)結合同類(lèi)項、(3)合并同類(lèi)項葫蘆島
初中數學(xué)知識點(diǎn)歸納
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數記憶順口溜
1三角函數記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱(chēng)的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內任何一個(gè)角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱(chēng)?谠E中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對應的三角函數為正值。
3三角函數順口溜
三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數字一,連結頂點(diǎn)三角形。向下三角平方和,倒數關(guān)系是對角,頂點(diǎn)任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數倍,奇數化余偶不變,將其后者視銳角,符號原來(lái)函數判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著(zhù)簡(jiǎn)易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實(shí)質(zhì)就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀(guān)好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。
初中數學(xué)知識點(diǎn)大全
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:
sin( )=-sin
cos( )=-cos
tan( )=tan
cot( )=cot
公式三: 任意角與 -的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin( )=sin
cos( )=-cos
tan( )=-tan
cot( )=-cot
初中數學(xué)知識點(diǎn)總結13
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的.誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數學(xué)知識點(diǎn)總結14
一、基本知識
一、數與代數
A、數與式:
1、有理數:
、僬麛怠麛,0,負整數;
、诜謹怠謹,負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:帶上符號進(jìn)行正常運算。
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0、
、鄢朔e為1的兩個(gè)有理數互為倒數。
除法:
、俪砸粋(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數
無(wú)理數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數,例如:π=…
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。
、垡粋(gè)正數有2個(gè)平方根;0的平方根為0;負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;
、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項;②把同類(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。
、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。
冪的運算:
A^M+A^N=A^(M+N)
。ˋ^M)^N=A^(MN
。ˋ/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、
整式的除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢档姆匠探蟹质椒匠。
、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1、
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的'方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y=0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖像與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點(diǎn)式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
。1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a
也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;
II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;
III當△B,則A+C>B+C;
在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;
例如:如果A>B,則A—C>B—C;
在不等式中,如果乘以同一個(gè)正數,不等式符號不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個(gè)負數,不等號改向;
例如:如果A>B,則A*C
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;
3、函數
變量:因變量Y,自變量X。
在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數軸上的點(diǎn)自變量,用豎直方向的數軸上的點(diǎn)表示因變量。
一次函數:
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱(chēng)Y是X的一次函數。
、诋擝=0時(shí),稱(chēng)Y是X的正比例函數。
一次函數的圖像:
、侔岩粋(gè)函數的自變量X與對應的因變量Y的值分別作為點(diǎn)的橫坐標與縱坐標,在直角坐標系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖像。
、谡壤瘮礩=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O時(shí),則經(jīng)234象限;
當K〈0,B〉0時(shí),則經(jīng)124象限;
當K〉0,B〈0時(shí),則經(jīng)134象限;
當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:
、賵D形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線(xiàn):
、倬(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。
、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:
、賰牲c(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。兩點(diǎn)之間直線(xiàn)最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角,180、始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角,360、
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:
、偻黄矫鎯,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。
垂直:
、偃绻麅蓷l直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。
垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。
垂直平分線(xiàn)定理:
性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;
判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上;
角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)的集合。
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上;
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:
1、對角線(xiàn)相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等——補角=180—角度。
4、同角或等角的余角相等——余角=90—角度。
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理:三角形兩邊的和大于第三邊
16、推論:三角形兩邊的差小于第三邊
17、三角形內角和定理:三角形三個(gè)內角的和等于180°
18、推論1:直角三角形的兩個(gè)銳角互余
19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個(gè)三角形全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個(gè)三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等
27、定理1:在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1:等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
31、推論2:等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合,即三線(xiàn)合一;
32、推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°
33、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
34、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對等角)
35、推論1:三個(gè)角都相等的三角形是等邊三角形
36、推論:有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39、定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理:和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1:關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理:如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3:兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理:如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理:如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理:四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理:n邊形的內角的和等于(n—2)×180°
51、推論:任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1:平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2:行四邊形的對邊相等
54、推論:夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3:平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3:對角線(xiàn)互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2:矩形的對角線(xiàn)相等
62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2:對角線(xiàn)相等的平行四邊形是矩形
64、菱形性質(zhì)定理1:菱形的四條邊都相等
65、菱形性質(zhì)定理2:菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2
67、菱形判定定理1:四邊都相等的四邊形是菱形
68、菱形判定定理2:對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2:正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71、定理1:關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2:關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理:如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理:如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
81、三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理:梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理:三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
87、推論:平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理:如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
90、定理:平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2:兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)
94、判定定理3:三邊對應成比例,兩三角形相似(SSS)
95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似(HL)
96、性質(zhì)定理1:相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97、性質(zhì)定理2:相似三角形周長(cháng)的比等于相似比
98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)
101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109、定理:不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理
圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121、①直線(xiàn)L和⊙O相交0<=d<r
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
122、切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123、切線(xiàn)的性質(zhì)定理
圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理
從圓外一點(diǎn)引圓的兩條切線(xiàn)相交與一點(diǎn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理
從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項?
133、推論
從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條
割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R—r<d<R+r(R>r)
、軆蓤A內切d=R—r(R>r)
、輧蓤A內含d<R—r(R>r)
136、定理
相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內角都等于(n—2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長(cháng)
142、正三角形面積√3a^2/4,a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長(cháng)計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線(xiàn)長(cháng)=d—(R—r),外公切線(xiàn)長(cháng)=d—(R+r)
初中數學(xué)知識點(diǎn)總結15
一、基本知識
、、數與代數
A、數與式:
1、有理數
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0、
、鄢朔e為1的兩個(gè)有理數互為倒數。
除法:
、俪砸粋(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。
、垡粋(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項。
、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。
、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。
冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢档姆匠探蟹质椒匠。
、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1、
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的'方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y的0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖象與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點(diǎn)式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
。1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;
II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;
III當△B,A+C>B+C在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個(gè)正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負數,不等號改向;例如:A>B,A*C系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。
、谡壤瘮礩=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
、婵臻g與圖形A、圖形的認識1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:
、賵D形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線(xiàn):
、倬(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。
、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:
、賰牲c(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:
、偻黄矫鎯,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。
垂直:
、偃绻麅蓷l直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。
垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。
垂直平分線(xiàn)定理:
性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出
現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個(gè)內角的和等于180°
18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等
24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等
27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)
31、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35、推論1三個(gè)角都相等的三角形是等邊三角形
36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n—2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2矩形的對角線(xiàn)相等
62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形
64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
81、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
87、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
90、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)
94、判定定理3三邊對應成比例,兩三角形相似(SSS)
95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
122、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
133、推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內切d=R—r(Rr)⑤兩圓內含dR—r(Rr)
136、定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內角都等于(n—2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)
142、正三角形面積√3a/4a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長(cháng)計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線(xiàn)長(cháng)=d—(R—r)外公切線(xiàn)長(cháng)=d—(R+r)
一、常用數學(xué)公式
公式分類(lèi)公式表達式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b|
|a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|
一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a
根與系數的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達定理判別式
b2—4ac=0注:方程有兩個(gè)相等的實(shí)根b2—4ac>0注:方程有兩個(gè)不等的實(shí)根
b2—4ac歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。
9、幾何變換法
在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。
10、客觀(guān)性題的解題方法
選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
。2)驗證法:由題設找出合適的驗證條件,再通過(guò)驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱(chēng)為驗證法(也稱(chēng)代入法)。當遇到定量命題時(shí),常用此法。
。3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據數學(xué)知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過(guò)對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)知識點(diǎn)總結06-12
數學(xué)初中知識點(diǎn)總結03-27